Back to Home                           

1. HP-Mech        
A high pressure mechanism for H2, CO, CH2O, CH4, CH3OH, C2H2, C2H4, C2H6 with EGR effects (CO2 and H2O) and HCO prompt reactions.      
Updated: May 18, 2017
Authors: Xueliang Yang, Xiaobo Shen, Jeffery Santer, Hao Zhao, and Yiguang Ju    
Collaborators: Michael P. Burke, Emily A. Carter, Stephen Dooley, Fred L. Dryer, Francis M. Haas, Stephen Klippenstein, Katharina Kohse-Höinghaus, Chung K. Law, Dong Liu, Wenting Sun, Ting Tan, Sheng Yang, Sang Hee Won 
HP-Mech Citation and Validation  
Detailed model
Thermo database
Transport database 
1.1. HP-Mech v3.3 for DME    
Updated: June 22, 2018
Authors: Christopher B. Reuter, Rui Zhang, Omar R. Yehia, Yacine Rezgui, Yiguang Ju  
Citation: Christopher B. Reuter, Rui Zhang, Omar R. Yehia, Yacine Rezgui, Yiguang Ju, Counterflow flame experiments and chemical kinetic modeling of dimethyl ether/methane mixtures, Combustion and Flame, 196(2018), Pages 1-10   
Detailed model
Thermo database
Transport database
1.2. HP-Mech for Methanol (the latest version)
Updated: September 7, 2022
Citation: Z. Wang, H. Zhao, C. Yan, Y. Lin, A.D. Lele, W. Xu, B. Rotavera, A.W. Jasper, S.J. Klippenstein, Y. Ju, Methanol oxidation up to 100 atm in a supercritical pressure jet-stirred reactor, Proc. Combust. Inst., 2023, in press.Detailed model
Thermo database
Transport database 
1.3. HP-Mech for DME (the latest version)
Updated: February 23, 2022
Citation: C. Yan, H. Zhao, Z. Wang, G. Song, Y. Lin, A.W. Jasper, S.J. Klippenstein, Y. Ju, Low- and intermediate-temperature oxidation of dimethyl ether up to 100 atm in a supercritical pressure jet-stirred reactor, Combust. Flame, in press (2022) 112059.Detailed model
Thermo database
Transport database 
2. Methyl Esters         
A chemical kinetic model encompassing the high temperature oxidation chemistry of methyl formate, methyl ethanoate, methyl propanaote, methyl butanoate, methyl pentanoate, methyl hexanoate and methyl decanoate.      
Updated: June 18th, 2012
Author: Pascal Diévart, Yiguang Ju 
Citation:P. Diévart, S.H. Won, J. Gong, S. Dooley, Y. Ju, A Comparative Study of the Chemical Kinetic Characteristics of Small Methyl Esters in Diffusion Flame Extinction, Proceedings of the Combustion Institute, Vol. 34, 2013, accepted for presentationFor reduced kinetic models, also cite references for “PRINCETON CHEM-RC”
Detailed model
Reduced model for methyl formate to methyl pentanoate
Reduced model for methyl hexanoate
Reduced model for methyl decanoate
Thermo database
Transport database
3. Methyl Butanoate and Decanoate           
A low and high temperature kinetic model for methyl decanoate and butanoate.      
Updated: February 16th, 2012
Author: Pascal Diévart, Yiguang Ju 
Citation:P. Diévart, S.H. Won, S. Dooley, F.L. Dryer, Y. Ju, A kinetic model for methyl decanoate combustion, Combustion and Flame 157 (2012) 1793-1805For reduced kinetic models, also cite references for “PRINCETON CHEM-RC”
Detailed model
Reduced model 1
Reduced model 2
Thermo database
Transport database
4. Methyl proanaote           
A low and high temperature kinetic model for methyl propanaote.      
Updated: May 18th, 2017
Author: Xueliang Yang, Hao Zhao, Daniel Felsmann, Ting Tan, Yiguang Ju 
Citation:Daniel Felsmann, Hao Zhao, Qiang Wang, Isabelle Graf, Ting Tan, Xueliang Yang, Emily A. Carter, YiguangJu, Katharina Kohse-Höinghaus, Contributions to improving small ester combustion chemistry: theory, model and experiments, Proceedings of the Combustion Institute, 36 (2016) 1-10.  
Detailed model
Thermo database
Transport database
5. Ozone mechanism           
A low and high temperature kinetic model for ozone.
Updated: May 18th, 2017
Author: Xueliang Yang, Hao Zhao, Yiguang Ju 
Citation: H. Zhao, X. Yang, Y. Ju, Kinetic studies of ozone assisted low temperature oxidation of dimethyl ether in a flow reactor using molecular-beam mass spectrometry, Combustion and Flame 173 (2016) 187-194.
Detailed model
Thermo database
Transport database