!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!    http://engine.princeton.edu/mechanism/HP-Mech.html    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!              Authors: Xueliang Yang, Xiaobo Shen, Jeffery Santer, Hao Zhao, and Yiguang Ju @Princeton University            !
!                                                                                                                             !
! Collaborators: Michael P. Burke, Emily A. Carter, Stephen Dooley, Fred L. Dryer, Francis M. Haas,                           !
! Stephen Klippenstein, Katharina Kohse-Höinghaus, Chung K. Law,  Dong Liu, Wenting Sun, Ting Tan, Sheng Yang, Sang Hee Won   !
!                                                                                                                             !
!-----------------------------------------------------------------------------------------------------------------------------!
! Primary Paper Citation:
!
! [1] Shen, X., Yang, X., Santner, J., Sun, J. and Ju, Y., 2015. Experimental and kinetic studies of acetylene flames at elevated pressures. 
!     Proceedings of the Combustion Institute, 35(1), pp.721-728. 
! [2] Hao Zhao, Jiapeng Fu, Francis M. Haas,Yiguang Ju, Effect of prompt dissociation of formyl radical on 1,3,5-trioxane and CH2O laminar flame 
!     speeds with CO2 dilution at elevated pressure, Combustion and Flame, 183 (2017) 253–260.
!  
!--------------------Other HP-Mech Sub-Mechanism validation papers for different fuels and CO2/H2O---------------------------------------------------------------------------------------
! 
! [3] Michael P. Burke, Marcos Chaos, Yiguang Ju, Frederick L. Dryer, Stephen J. Klippenstein, Comprehensive H2/O2 Kinetic Model for High-Pressure Combustion, International journal of Chemical Kinetics, Vol. 44(7), 2012, pp. 444-474
! [4] Yang, Sheng, Xueliang Yang, Fujia Wu, Yiguang Ju, and Chung K. Law. "Laminar flame speeds and kinetic modeling of H2/O2/diluent mixtures at sub-atmospheric and elevated pressures." Proceedings of the Combustion Institute 36, no. 1 (2017): 491-498.
! [5] J Santner, FL Dryer, Y Ju, The effects of water dilution on hydrogen, syngas, and ethylene flames at elevated pressure, Proceedings of the Combustion Institute 34 (1), 719-726, 2013
! [6] Santner, J., Haas, F.M., Dryer, F.L. and Ju, Y., 2015. High temperature oxidation of formaldehyde and formyl radical: A study of 1, 3, 5-trioxane laminar burning velocities. Proceedings of the Combustion Institute, 35(1), pp.687-694.
! [7] Liu, D., Santner, J., Togbé, C., Felsmann, D., Koppmann, J., Lackner, A., Yang, X., Shen, X., Ju, Y. and Kohse-Höinghaus, K., 2013. Flame structure and kinetic studies of carbon dioxide-diluted dimethyl ether flames at reduced and elevated pressures. Combustion and Flame, 160(12), pp.2654-2668.
! [8] Diévart, P., Won, S.H., Gong, J., Dooley, S. and Ju, Y., 2013. A comparative study of the chemical kinetic characteristics of small methyl esters in diffusion flame extinction. Proceedings of the Combustion Institute, 34(1), pp.821-829.
! [9] JS Santner, X Yang, D Chen, Q Wang, Y Ju, X Shen, HP-Mech: A High Pressure Kinetic Mechanism for C2 Flames with Exhaust Gas Dilution, 53rd AIAA Aerospace Sciences Meeting, AIAA-Paper, 2015-0416.
!
!****************************************************************************************!
!																						 !
!                                  CHEMISTRY INPUT FILE                                  !
!																						 !
!****************************************************************************************!

ELEMENTS

C H N O AR HE 

END

SPECIES

! C0 species

H              H2             O              O2             OH
H2O            N2             HO2            H2O2           AR
HE

! C1 species

CO             CO2            CH2O           HCO            HOCO                       
CH3OH          CH2OH          CH3O      
CH3O2H         CH3O2          CH4            CH3            CH2
CH2(S)         C              CH             HCOH           HCOH(T)

! C2 SPECIES

C2H6           C2H5           C2H4           C2H3           C2H2
C2H            CH3CHO         CH3CO          CH2CHO         CH2CO
HCCO           H2CC           C2O            C2H3O2
HCCOH          OCHCHO         
C2H5OH         C2H5O          CH2CH2OH       CH3CHOH        CH3OCH2
C2H5O2         C2H4O1-2       C2H3O1-2       CH2CHOH

! C3 SPECIES
C3H2           C3H2SING       H2CCC          c-C3H2         C3H3  
pC3H4          aC3H4          c-C3H4         aC3H5          sC3H5
tC3H5          C3H6           nC3H7          iC3H7          C3H8
C2H3CO	       C2H3CHO 

! C4 SPECIES
C4H			   C4H2           nC4H3          iC4H3          C4H4      
nC4H5          iC4H5          
!C4H6-13        C4H6-12        C4H6-2  
H2C4O
!CH3CHCHCO      CH2CHCHCHO

! C5 SPECIES
!C5H2           HCCCHCCH       H2CCCCCH       C5H5           C5H6
!C5H4O          C5H4OH         l-C5H5         C5H5O

C5H6

! C6 SPECIES
C6H2           C6H3           l-C6H4         o-C6H4
C4H5C2H        FC6H6          C6H6           C6H5
C6H5OH         C6H5O          C6H4O2

C3H6O3

END

REACTIONS

!*********************************************************************************
!              H2/O2 mechanism of Burke et al. IJCK  (2011) with updates         !
!                                                                                !
!*********************************************************************************

!======================
!H2-O2 Chain Reactions
!======================

! Hong et al., Proceeding of the Combustion Institute (2011) 33, 309-316
!H+O2<=>O+OH                   1.040E+14     0.000      15286.0
!include low-T measurements. New fit reproduce Hong's data very well
H+O2<=>O+OH                    7.260E+14    -0.235      15928.7
! Baulch et al., Journal of Physical Chemical Reference Data (2005) 34, 758
O+H2<=>H+OH                    3.818E+12     0.000       7948.0
   DUPLICATE
O+H2<=>H+OH                    8.792E+14     0.000      19170.0
   DUPLICATE

! Michael and Sutherland, Journal of Physical Chemistry (1988) 92, 3853 (1988)
H2+OH<=>H2O+H                  2.160E+08     1.510       3430.0

! Baulch et al., Journal of Physical Chemical Reference Data (2005) 34, 758
!OH+OH=O+H2O                   3.340E+04     2.420      -1930.
! new fit
OH+OH=O+H2O                    9.320E+03     2.564      -2603.7
!=============================
! H2-O2 Dissociation Reactions
!=============================
H+H+H2<=>H2+H2                 1.015E+17    -0.600   0.0 
H+H+M<=>H2+M                   6.523E+17    -1.000   -53
   H2O/14.0/ CO/2.2/ CO2/4.6/ AR/1.0/ HE/0.75/ N2/1.0/ O2/1.0/ H2/0.0/ H/20/

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) 15, 1087
O+O+M<=>O2+M                   6.165E+15     -0.500      0.0
   H2/2.5/ H2O/12/ CO/1.9/ CO2/3.8/ AR/0.0/ HE/0.0/

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) 15, 1087
O+O+AR<=>O2+AR                 1.886E+13      0.000   -1788.0
O+O+HE<=>O2+HE                 1.886E+13      0.000   -1788.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) 15, 1087
O+H+M<=>OH+M               	   4.714E+18     -1.000       0.0
   H2/2.5/ H2O/12/ AR/0.75/ HE/0.75/ CO/1.9/ CO2/3.8/

! HPL rate
!Sellevåg et al., Journal of Physical Chemical A (2008) 112, 508505095
H+OH(+M)=H2O(+M)           	   2.510E+13      0.234     -114.
   LOW                         /4.50E+25     -3.064     1581.4/
! Srinivasan et al.,International Journal of Chemical Kinetics (2006) 38, 211-219
   TROE                        /0.72  1.0E-30 1.0E+30/
   H2/3.0/ HE/1.10/ N2/2.00/ O2/2.0/ AR/1.00/ CO/3.0/ CO2/4.0/ H2O /24.0/

!=================================
! Formation and Consumption of HO2
!=================================

! High-pressure limit from Troe, Proceeding of the Combustion Institute (2000) 28, 1463-1469
! Low-pressure  limit is close to Michael et al., Journal of Physical Chemistry A (2002) 106, 5297-5313
! refit the experimental data, resulting slightly different Centering factors 
! from Fernandes et al., Physical Chemistry and Chemical Physics (2008) 10, 4313-4321
!=================================================================================
! MAIN BATH GAS IS N2 (Comment this reaction otherwise)
! New fitting
H+O2(+M)<=>HO2(+M)        		1.025E+12     0.604          -241.1
   LOW                    		/1.736E+19    -1.230         0.0 /
   TROE                   		/0.495  1.00E-30  1.00E+30 /
   H2/2.0/ H2O/14/ O2/1.00/ CO/1.9/ CO2/3.0/ AR/0.60/ HE/0.72/  
!=================================================================================
! MAIN BATH GAS IS AR OR HE (Comment this reaction otherwise)
!H+O2(+M)<=>HO2(+M)         	1.025E+12     0.604          -241.1
!   LOW               			/1.676E+19     -1.290   129.3/
!   TROE           				/0.471   1.0E-10 1.00E+30  1.00E+30/
!   H2/3.4/ H2O/23/ O2/1.70/ CO/3.0/ CO2/6.40/ HE/1.20/ N2/1.70/

!=================================================================================

! Michael et al., Proceeding of the Combustion Institute (2000) Vol. 28, pp.1471
HO2+H=H2+O2                     2.750E+06     2.090    -1451.
! reason to decrease Joe Michael's rate: 0.5 ppm of CH4 can affect O atom profile 
! Mueller et al., International Journal of Chemical Kinetic (1999) Vol. 31, pp.113
HO2+H<=>OH+OH           		7.079E+13     0.000        295.0

!Silveira et al., J. Phys. Chem. A,2004, 108, 8721-8730
!J. Phys. Chem. A 2000 104 3204-3210         
! sum two channel up to new fit
HO2+O<=>O2+OH           		3.210E+11     0.704       -534.3

!New fit
HO2+OH<=>O2+H2O         		7.44E+12       0.055      -915.2
   DUPLICATE
HO2+OH<=>O2+H2O         		1.17E+23      -2.156     23681.
   DUPLICATE

!=====================================
!Formation and Consumption of H2O2
!=====================================

! Hong et al Proc Combust Inst 34(2013) 565-571
HO2+HO2<=>H2O2+O2       		1.000E+14     0.000      11041.
   DUPLICATE
HO2+HO2<=>H2O2+O2       		1.900E+11     0.000      -1409.
   DUPLICATE
   
! Troe, Combustion and Flame (2011) Vol.158, pp. 594-601
! Rate constant is for Argon
H2O2(+M)<=>OH+OH(+M)       		2.000E+12     0.900      48749.0
   LOW            				/2.490E+24    -2.300      48749.0/
   TROE        					/0.430 1.00E-30 1.00E+30/
   H2O/7.5/ CO2/1.6/ N2/1.5/ O2/1.5/ HE/1.00/ H2O2/7.7/
! Efficiencies for H2 and CO taken from Li et al., International Journal of Chemical Kinetic (2004) Vol. 36, pp. 566-575
   H2/3.7/ CO/2.8/

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087

!REF: ELLINGSON ET AL., J. PHYS. CHEM. A 111(51) (2007) 13554-13566. (FIT TO THE THEORETICAL RATE)
H2O2+H<=>H2+HO2            		8.020E+06     2.000       3862.
H2O2+H<=>H2O+OH            		7.060E+06     2.142       3412.
H2O2+O<=>OH+HO2            		9.550E+06     2.000       3970.0

! Hong et al., Journal of Physical Chemistry A (2010) Vol. 114, pp. 5718-5727
H2O2+OH<=>HO2+H2O          		1.738E+12     0.000        318.0
   DUPLICATE
H2O2+OH<=>HO2+H2O          		7.586E+13     0.000       7269.0
   DUPLICATE


!*********************************************************************************
!              CO/CO2 mechanism-HPMECH                                !
!                                                            !
!*********************************************************************************

! High-pressure limit from  Ahren Jasper higher level of theory
! Low-pressure limit from Tsang 1986 JPCRD , more close to experiments a factor of 2 higher than badwin 1972
! but much smaller than USC Mech II between 1000-2000K with 1000K just 25% and 2000K comparable.
! Chaperon efficiencies from USC-mech II 
CO+O(+M)<=>CO2(+M)             1.80E+10    -0.000        2380.
  LOW                         /6.16E+14    -0.000       2999.5 /
  H2/2.0/ O2/1.0/ H2O/12.0/ CH4/2.0/ CO/1.75/ CO2/3.6/ AR/0.7/ HE/0.7/

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087

CO+O2<=>CO2+O                 1.258E+13     0.000      47084.0

! You et al., Journal of Physical Chemistry A (2007) Vol. 111, pp.4031-1042
CO+HO2<=>CO2+OH               1.570E+05     2.180      17940.0

! Joshi and Wang, International Journal of Chemical Kinetics (2006) Vol. 38, pp. 57-73
! The rate used is the low pressure limit value.
CO+OH<=>CO2+H                 7.046E+04     2.053      -276.2
DUPLICATE
CO+OH<=>CO2+H                 5.757E+12    -0.664       331.9
DUPLICATE

!*********************************************************************************
!              HCO/CH2O mechanism-HPMECH                              !
!                                                            !
!*********************************************************************************

! Xueliang calculations, level of theory
! The efficiency Coefficient of Ar and He are from Xueliang's calulations
HCO(+M)=H+CO(+M)     		9.960E+16      -1.019   19896.0 
   LOW               		/1.800E+22    -2.420    19367./  
   TROE             		/0.855    3131    110   3570./
 H2/2.0/ H2O/12.0/ CO/1.50/ CO2/3.0/ AR/0.59/ N2/1.0/ HE/0.78/ CH2O/4.0/ 

! Timonen et al  J. Phys. Chem. 1988
HCO+O2<=>CO+HO2          	7.578E+12     -0.000	   406.

! Friedrichs et al, Physical Chemistry and Chemical Physics (2002), Vol. 4, pp.5778-5788
HCO+H<=>CO+H2           	1.100E+14     0.000          0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
HCO+O<=>CO+OH           	3.020E+13     0.000          0.0
HCO+O<=>CO2+H           	3.000E+13     0.000          0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
HCO+OH<=>CO+H2O         	3.020E+13     0.000          0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
! Branching ratio of 1:1 applied
HCO+HO2=>CO2+H+OH       	1.500E+13     0.000          0.0
HCO+HO2<=>CO+H2O2       	1.500E+13     0.000          0.0

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
! Forgeteg et al. (International Journal of Chemical Kinetics (1979) Vol. 11, pp. 219-) suggested a branching ratio k1/k2 of ~2
HCO+HCO<=>CH2O+CO       	2.000E+13     0.000          0.0
HCO+HCO=>H2+CO+CO       	1.000E+13     0.000          0.0


! Vasudevan et al., Proceedings of the Combustion Institute (2007) Vol. 31, pp. 175-183
!CH2O+O2<=>HCO+HO2       	2.150E+14     0.000      43004.0
!New fit of Baldwin, Michael and Vasudevan data
!CH2O+O2<=>HCO+HO2         	1.450E+10     1.25       39498.0
CH2O+O2<=>HCO+HO2        	1.00E+14      0.00       39998.0
! The high pressure limit is from Troe, Journal of Physical Chemistry A (2005) Vol. 109, pp. 8320-8328
! The low pressure limit is from Troe, Journal of Physical Chemistry A (2007) Vol. 111, pp. 3862-3867
! The rate constants published by Troe are for Argon as a bath gas.
! The pre-exponential factor has been scaled by 1.15 in order to set Nitrogen as the bath gas.
! The Collision efficicency are taken From Li et al., Int. J. Chem. Kin. (2007) Vol. 37, pp. 109-136
CH2O(+M)<=>CO+H2(+M)    	1.230E+14    0.000      82935.
						LOW/3.100E+45   -8.000      97514.0 /
H2/2.00/ H2O/12.0/ AR/0.7/ CO/1.50/ CO2/3.80/ CH4/2.00/ 

! The high pressure limit is from Troe, Journal of Physical Chemistry A (2005) Vol. 109, pp. 8320-8328
! The low pressure limit is from Troe, Journal of Physical Chemistry A (2007) Vol. 111, pp. 3862-3867
! The rate constants published by Troe are for Argon as a bath gas.
! The pre-exponential factor has been scaled by 1.15 in order to set Nitrogen as the bath gas.
! The Collision efficicency are taken From Li et al., Int. J. Chem. Kin. (2007) Vol. 37, pp. 109-136
CH2O(+M)<=>HCO+H(+M)    	8.360E+17   -0.500      89149.0
						LOW/3.000E+39   -6.300      99904.0 /
H2/2.00/ H2O/12.0/ AR/0.7/ CO/1.50/ CO2/3.80/ CH4/2.00/ 

! Vasudevan et al., International Journal of Chemical Kinetic (2005) Vol. 37, pp. 98-
CH2O+OH<=>HCO+H2O           7.820E+07    1.630   -1055.0 
PLOG /     +1.0000000E+000  7.820E+07    1.630   -1055.0 / 
PLOG /     +1.0000000E+001  7.820E+07    1.630   -1055.0 / 
     DUPLICATE 
CH2O+OH<=>HCO+H2O          -2.587E+11    0.692    9370.9  
PLOG /     +1.0000000E+000 -2.587E+11    0.692    9370.9 / 
PLOG /     +1.0000000E+001 -2.737E+11    0.679    9904/
     DUPLICATE  
CH2O+OH<=>H+CO+H2O          2.587E+11    0.692    9370.9 
PLOG /     +1.0000000E+000  2.587E+11    0.692    9370.9 / 
PLOG /     +1.0000000E+001  2.737E+11    0.679    9904/ 

! Irdam et al., International Journal of Chemical Kinetic (1993) Vol. 25, pp. 285-303      HCO prompt dissociation
! Friedrichs et al. (International Journal of Chemical Kinetic (2002) Vol.34, pp. 374-) confirmed this number
CH2O+H<=>HCO+H2           	5.860E+03    3.130    1514.0 
PLOG /     +1.0000000E+000  5.860E+03    3.130    1514.0  / 
PLOG /     +1.0000000E+001  5.860E+03    3.130    1514.0  / 
     DUPLICATE 
CH2O+H<=>HCO+H2            -5.109E+07    2.182   11528 
PLOG /     +1.0000000E+000  -5.109E+07    2.182   11528  / 
PLOG /     +1.0000000E+001  -1.16E+09    1.812   13167 /  
     DUPLICATE 
CH2O+H<=>H+CO+H2          	5.109E+07    2.182   11528 
PLOG /     +1.0000000E+000  5.109E+07    2.182   11528  / 
PLOG /     +1.0000000E+001  1.16E+09    1.812   13167 / 


! Hessler, J.P. ; Du, Hong [1] ; Ogren, P.J. High-temperature study of O + H2CO = OH + HCO
! Conference: 207. spring national meeting of the American Chemical Society (ACS),San Diego, CA (United States),13-18 Mar 1994; Other Information: PBD: [1994]
CH2O+O<=>HCO+OH           	1.560E+08    1.670     1770.
PLOG /     +1.0000000E+000  1.560E+08    1.670     1770. / 
PLOG /     +1.0000000E+001  1.560E+08    1.670     1770. /  
     DUPLICATE 
CH2O+O<=>HCO+OH            -9.338E+17   -0.803    21684. 
PLOG /     +1.0000000E+000  -9.338E+17   -0.803    21684. / 
PLOG /     +1.0000000E+001  -1.973E+18   -0.882    22607 / 
     DUPLICATE 
CH2O+O<=>H+CO+OH          	9.338E+17   -0.803    21684.  
PLOG /     +1.0000000E+000  9.338E+17   -0.803    21684. / 
PLOG /     +1.0000000E+001  1.973E+18   -0.882    22607 /    

! Calculation data
!CH2O+HO2<=>HCO+H2O2        1.884E+04     2.700     11520.
CH2O+HO2<=>HCO+H2O2        5.451E+00     3.720      9072.8

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 					HCOH RADICAL REACTION SET							 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! Estimation
HCOH+O=>CO+H2O              8.00E+13     0.000       0.0
HCOH+OH=>HCO+H2O            3.00E+13     0.000       0.0
HCOH+H<=>HCO+H2             3.00E+13     0.000       0.0
HCOH+H<=>CH2O+H             3.00E+13     0.000       0.0
HCOH+O2=HO2+HCO				1.00E+13     0.000       0.0
HCOH(+M)=HCO+H(+M)          4.49E+10     1.050     46738 
  LOW				       /5.46E+29    -3.980     50083.4/
  TROE/ 0.571  2843.2 289.6 12522.7/
 H2/2.0/ H2O/6.0/ CO/1.50/ CO2/3.0/ AR/1.0/ C2H2/3.0/ O2/1.20/ N2/1.00/ CH4/2.0/ HE/1.0/ 
 
!*********************************************************************************
!																				 !
!              				C mechanism-HPMECH									 !
!																				 !
!*********************************************************************************
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! CARBON ATOM C REACTION SET
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! GRI-Mech 3.0 http://www.me.berkeley.edu/gri_mech/
C+OH<=>CO+H                  5.000E+13     0.000         0.0

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
C+O2<=>CO+O                  6.624E+13     0.000       635.9

!*********************************************************************************
!																				 !
!              				CH mechanism-HPMECH							 		 !
!																				 !
!*********************************************************************************

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH+H<=>C+H2                  1.200E+14     0.000         0.0

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH+O<=>CO+H                  3.974E+13     0.000         0.0

! GRI-Mech 3.0 http://www.me.berkeley.edu/gri_mech/
CH+OH<=>HCO+H                3.000E+13     0.000         0.0

! Huang et al. (Journal of Physical Chemistry A (2002) Vol. 106, pp. 5490-5497) calculated the PES of the CH+O2 reactions. However, they only find the CO+OH and CO2+H channels.
! Rohrig et al. reported an overall experimental rate constant of 1.00 x 10^14 cm^3.mol^-1.K^-1 for T btween 2200-2600K
! Berman et al. (Symposium International on Combustion (1982) Vol. 19, pp. 73-) reported a rate of 3.25 x 10^13 cm^3.mol^-1.K^-1 for T between 300-700K
! Taatjes (Journal of Physical Chemistry (1996) Vol. 100, pp. 17840-) reported a rate of 3.37 x 10^14 x T^-0.48 cm^3.mol^-1.K^-1 for T between 20-300K
! Least square fit was performed on all these data, and obtained the overall expression 3.3 x 10^10 x T^1.008 x EXP(489.9/RT) cm^3.mol^-1.K^-1
CH+O2<=>CO2+H                9.900E+09      1.008      -489.9
CH+O2<=>CO+OH                6.600E+09      1.008      -489.9
CH+O2<=>HCO+O                6.600E+09      1.008      -489.9
CH+O2=>CO+O+H                9.900E+09      1.008      -489.9

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH+H2O<=>H+CH2O              4.577E+16    -1.420         0.0

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH+CO2<=>HCO+CO              6.383E+07     1.510      -715.4

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH+CH2O<=>H+CH2CO            9.635E+13     0.000      -516.7

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
! Low pressure limit scaled by 1.40 to set N2 as the main bath gas
CH+CO(+M)<=>HCCO(+M)       3.794E+00     2.500         0.0
LOW / 1.463E+15    -0.400  0.0 /
TROE / 0.600  10.0  1.0E+07  1.0E+06 / 
H2/2.0/ H2O/6.0/ CH4/2.0/ CO/1.5/ CO2/2.0/ C2H6/3.0/ AR/0.7/  

!*********************************************************************************
!																				 !
!             			 CH2 mechanism-HPMECH							 		 !
!																				 !
!*********************************************************************************

! Triplet methylene

! Kiefer and Kumaran, Journal of Physical Chemistry (1993) Vol. 97, pp. 414-420
CH2+M=>C+H2+M                1.148E+14     0.000      55820.0
H2/2.0/ H2O/6.0/ CH4/2.0/ CO/1.5/ CO2/2.0/ C2H6/3.0/ AR/0.7/  


CH2+H<=>CH+H2                3.118E+13     0.000      -1341.

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH2+O=>CO+H+H                1.228E+14     0.000       536.5
CH2+O<=>CO+H2                8.190E+13     0.000       536.5

! Jasper et al., Journal of Physical Chemistry A (2007) Vol. 111, pp. 8699-8707
CH2+OH<=>CH+H2O              8.630E+05     2.019      6776.0
CH2+OH<=>CH2O+H              2.860E+13     0.123      -162.0

! Lee et al., Journal of Physical Chemistry A (2012) Vol. 116, pp. 9245-9256
! The overall rate constant is 1.650E+13 x EXP(-874/T)
! Complex system with few experimental measurements
! The branching ratio between all the different channels is not well established.
! Blitz et al. (Z. Phys. Chem. (2011) Vol. 225, pp. 957?67) determined the following
! branching ratios at 298 K : CO+OH+H 32%, CO2+H+H 23%, CO2+H2 21%, CH2O+O 18%, CO+H2O 6%
! whereas Lee et al. determined at T about 1935 K the following
! branching ratios: CO+OH+H and CO2+H+H 58%, O+CH2O 23%, CO2+H2 and CO+H2O 19%
! Temperature dependence was derived from those two temperatures and applied to the overall rate constant.
CH2+O2=>CO+OH+H              5.673E+12     0.000       1779.2
CH2+O2=>CO2+H+H              3.991E+12     0.000       1766.6
CH2+O2<=>CO2+H2              3.968E+12     0.000       1908.4
CH2+O2<=>CH2O+O              2.328E+12     0.000       1501.3
CH2+O2<=>CO+H2O              6.130E+11     0.000       1453.0

! Lu et al.,  Journal of Physical Chemistry A (2010) Vol. 114, pp. 5493-5502
CH2+H2<=>H+CH3               4.408E+05     2.300      7350.7

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH2+HO2<=>OH+CH2O            2.000E+13     0.000         0.0

! Wang et al., Theoretical Chemistry AcCOunts (2006) Vol. 115, pp. 205-211
CH2+CH2O<=>CH3+HCO           7.407E-02     4.210      1623.9

! Braun et al., Journal of Chemical Physics (1981) Vol. 56, pp. 355-
CH2+CH<=>H+C2H2              4.000E+13     0.000         0.0

! Jasper et al., Journal of Physical Chemistry A (2007) Vol. 111, pp. 8699-8707
! The overall rate constant is 8.867E+13 x T^0.002 x EXP(-4.5/T)
! The branching ratio between the two channels was caluclated as C2H2+2H/C2H2+H2 4/1
CH2+CH2<=>C2H2+2H                        7.094E+13     0.002       8.9
CH2+CH2<=>C2H2+H2                        1.773E+13     0.002       8.9

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH2+CO2<=>CH2O+CO            2.350E+10     0.000         0.0

!! GRI-Mech 3.0 http://www.me.berkeley.edu/gri_mech/ not important, just used to complete the reaction set
CH2+CO(+M)=CH2CO(+M)                   	8.10E+11	0.50      4510.  
	LOW                            /2.69E+33	-5.11     7095./
	TROE/ 0.5907  275.0  1226.00  5185.00 /
 H2/2.0/ H2O/6.0/ CH4/2.0/ CO/1.5/ CO2/2.0/ C2H6/3.0/ AR/0.7/ HE/0.8/
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!					 Singlet methylene							  !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! K. L. Gannon, M. A. Blitz, T. Kovács, M. J. Pilling, and P. W. Seakins J. Chem. Phys. 132, 024302(2010)
CH2(S)+HE<=>CH2+HE           5.37E+11	0.52       781.
CH2(S)+AR<=>CH2+AR           1.15E+09	1.35      -393.
CH2(S)+N2<=>CH2+N2           1.10E+10	1.13      -280.
CH2(S)+H2<=>CH2+H2           1.07E+12	0.52       781.
CH2(S)+O2<=>CH2+O2           1.10E+10	1.13      -280.
CH2(S)+CO<=>CH2+CO           1.10E+10	1.13      -280.
CH2(S)+H2O<=>CH2+H2O         5.56E+10	1.05      -274.
CH2(S)+CO2<=>CH2+CO2         2.78E+10	1.05      -274.
CH2(S)+C2H2<=>CH2+C2H2       0.80E+15	-0.57     -4.85  !! Pilling and Harding 20%

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH2(S)+C2H4<=>CH2+C2H4       1.144E+13     0.000      -556.4
CH2(S)+CH4<=>CH2+CH4         1.867E+12     0.000      -496.8

CH2(S)+M<=>CH2+M             1.200E+13     0.000         0.0
HE/0.0/ AR/0.0/ N2/0.0/ H2/0.0/ O2/0.0/ H2O/0.0/ CO2/0.0/ CH4/0.0/
C2H2/0.0/ C2H4/0.0/ CO/0.0/
!!==================================== above energy transfer==================================
! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH2(S)+H<=>CH+H2             3.000E+13     0.000         0.0

! estimated
CH2(S)+O<=>H+CO+H             4.505E+13     0.000         0.0
CH2(S)+O<=>CO+H2              4.505E+13     0.000         0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH2(S)+OH<=>CH2O+H           3.010E+13     0.000         0.0

! GRI-Mech 3.0 http://www.me.berkeley.edu/gri_mech/
CH2(S)+O2=>CO+OH+H           2.800E+13     0.000         0.0
CH2(S)+O2=>CO+H2O            1.200E+13     0.000         0.0

! Gannon et al., Journal of Physical Chemistry A (2008) Vol. 112, pp. 9575-9583
CH2(S)+H2<=>CH3+H            6.311E+13     0.000         0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH2(S)+HO2<=>CH2O+OH         3.010E+13     0.000         0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH2(S)+H2O2<=>CH3O+OH        3.010E+13     0.000         0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH2(S)+CO2<=>CH2O+CO         3.000E+12     0.000         0.0

! GRI-Mech 3.0 http://www.me.berkeley.edu/gri_mech/
! This reaction is known to be fast. Need better references
CH2(S)+H2O<=>CH2O+H2         6.820E+10     0.250      -935.0

!*********************************************************************************
!																				 !
!              		HCOOH mechanism-HPMECH								 		 !
!																				 !
!*********************************************************************************

! Veyret et al., Int, J. Chem. Kin. (1984) Vol. 16, pp. 1599-1608
!HOCH2O<=>HOCHO+H            1.000E+14    0.000   14900.0

! The decomposition reactions of Formic Acid HOCHO have been treated with a Quantum RRK treatment.

! High Pressure Limit: Chang et al., J. Phys. Chem. A (2007) Vol. 111, pp. 6789-6797
!HOCHO(+M)<=>CO+H2O(+M)      7.490E+14    0.000   68710.0
!LOW / 7.509E+35   -5.141   75378.6 /
!TROE / 0.658  3.9995E+06  18.20  6.2394E+10 /
!AR/0.7/ H2/2.0/ H2O/6.0/ CH4/2.0/ CO/2.0/ CO2/3.0/ C2H6/3.0/
!CH3OCHO/3.0/ CH3OH/3.0/ 

! High Pressure Limit: Chang et al., J. Phys. Chem. A (2007) Vol. 111, pp. 6789-6797
!HOCHO(+M)<=>CO2+H2(+M)      4.460E+13    0.000   68240.0
!LOW / 3.794E+36   -5.599   73824.6 /
!TROE / 0.832  6.3888E+07  15.60  5.1116E+10 /
!AR/0.7/ H2/2.0/ H2O/6.0/ CH4/2.0/ CO/2.0/ CO2/3.0/ C2H6/3.0/
!CH3OCHO/3.0/ CH3OH/3.0/ 

! Galano et al., J. Phys. Chem. A (2002) Vol. 106, pp. 9520-9528
!HOCHO+OH<=>H2O+OCHO                 1.370E+10   0.000  -1562.0
!HOCHO+OH<=>H2O+HOCO                 5.932E+11   0.000   2059.0

! Healy et al.
!HOCHO+HO2<=>OCHO+H2O2               2.549E+12   0.040  34470.0
!HOCHO+HO2<=>HOCO+H2O2               1.000E+12   0.000  11920.0

! Healy et al.
!HOCHO+O<=>HOCO+OH                   1.770E+18  -1.900   2975.0

! Healy et al.
!HOCHO+H<=>OCHO+H2                   4.240E+06   2.100   4868.0
!HOCHO+H<=>HOCO+H2                   6.030E+13  -0.350   2988.0

! Healy et al.
!HOCHO+CH3<=>HOCO+CH4                3.900E-07   5.800   2200.0

! Healy et al.
!HOCHO+HCO<=>CH2O+OCHO               8.584E+11   0.040  26750.0
!HOCHO+O2<=>OCHO+HO2                 4.101E+12  -0.308  59880.0


!*********************************************************************************
!																				 !
!              		CH3 mechanism-HPMECH								 		 !
!																				 !
!*********************************************************************************

! Lim and Michael, Symposium International on Combustion, 1994, Vol. 25, pp. 713-719
! Nitrogen set as the bath gas
! Efficiencies taken from GRI-Mech 3.0 http://www.me.berkeley.edu/gri_mech/
CH3+M=>CH2+H+M          4.030E+15     0.000      84468.0
H2/2.0/ H2O/6.0/ CH4/2.0/ CO/1.5/ CO2/2.0/ C2H6/3.0/
AR/0.7/ HE/0.70/ CH3OH/4.0/

! Lim and Michael, Symposium International on Combustion, 1994, Vol. 25, pp. 713-719
! Nitrogen set as the bath gas
! Efficiencies taken from GRI-Mech 3.0 http://www.me.berkeley.edu/gri_mech/
CH3+M=>CH+H2+M         3.569E+15     0.000      81046.0
H2/2.0/ H2O/6.0/ CH4/2.0/ CO/1.5/ CO2/2.0/ C2H6/3.0/
AR/0.7/ HE/0.70/ CH3OH/4.0/

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH3+O<=>CH2O+H          6.745E+13     0.000         0.0

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH3+O=>CO+H2+H          1.686E+13     0.000         0.0

! Jasper et al., Journal of Physical Chemistry A (2007) Vol. 111, pp. 3932-3950
CH3+OH<=>CH2+H2O        4.293E+04     2.568      3998.2

! Jasper et al., Journal of Physical Chemistry A (2007) Vol. 111, pp. 3932-3950
CH3+OH<=>CH2(S)+H2O          4.283E+15       -0.860     1887.5
PLOG /    0.001316     1.132E+14       -0.458     -496.2 /
PLOG /    0.013158     2.234E+14       -0.538     -220.4 /
PLOG /    0.131579     1.160E+15       -0.727      600.5 /
PLOG /    1.315789     4.283E+15       -0.860     1887.5 /
PLOG /   13.157895     4.385E+14       -0.539     2931.7 /
PLOG /  131.578947     6.091E+10        0.596     2922.8 /

CH3+OH<=>H2+CH2O            3.555E+12       -0.532     2042.3
PLOG /    0.001316     3.887E+09        0.254    -1220.7 /
PLOG /    0.013158     1.988E+10        0.060     -624.4 /
PLOG /    0.131579     2.815E+11       -0.250      498.3 /
PLOG /    1.315789     3.555E+12       -0.532     2042.3 /
PLOG /   13.157895     2.192E+12       -0.432     3415.4 /
PLOG /  131.578947     2.360E+09        0.453     3791.0 /

CH3+OH<=>H+CH2OH            1.006E+10        0.942     3295.0
PLOG /    0.001316     8.442E+09        0.963     3230.4 /
PLOG /    0.013158     8.442E+09        0.963     3230.4 /
PLOG /    0.131579     1.006E+10        0.942     3295.0 /
PLOG /    1.315789     5.601E+10        0.740     3971.0 /
PLOG /   13.157895     5.531E+11        0.486     5443.5 /
PLOG /  131.578947     2.525E+10        0.909     6402.1 /

CH3+OH<=>H+CH3O             7.926E+08        1.065    11859.0
PLOG /    0.001316     7.893E+08        1.065    11858.5 /
PLOG /    0.013158     7.893E+08        1.065    11858.5 /
PLOG /    0.131579     7.893E+08        1.065    11858.5 /
PLOG /    1.315789     7.926E+08        1.065    11859.0 /
PLOG /   13.157895     1.029E+11        1.034    11969.8/
PLOG /  131.578947     3.073E+11        0.922    12980.5 /

CH3+OH<=>H2+HCOH            6.533E+11        0.112      931.9
PLOG /    0.001316     1.210E+09        0.830    -2322.5 /
PLOG /    0.013158     6.397E+09        0.633    -1700.9 /
PLOG /    0.131579     8.000E+10        0.340     -564.6 /
PLOG /    1.315789     6.533E+11        0.112      931.9 /
PLOG /   13.157895     2.064E+11        0.295     2199.8 /
PLOG /  131.578947     9.402E+07        1.286     2423.8 /


! Srinivasan et al., Journal of Physical Chemistry A (2005) Vol. 109, pp. 7902-7914
CH3+O2<=>CH3O+O         		7.546E+12     0.000     28320.0

! Srinivasan et al., Journal of Physical Chemistry A (2007) Vol. 111, pp. 11589-11591
CH3+O2<=>CH2O+OH        		6.383E+11     0.000     13594.0

! Jasper et al., Proceeding of the Combustion Institute (2007) Vol. 32, pp. 279-286
CH3+HO2<=>CH3O+OH       		1.000E+12     0.269      -687.5

! Jasper et al., Proceeding of the Combustion Institute (2007) Vol. 32, pp. 279-286
CH3+HO2<=>CH4+O2        		1.189E+05     2.228     -3022.5

! Harding et al., Physical Chemistry Chemical Physics (2007) Vol. 9, pp. 4055-4070
HCO+CH3<=>CH4+CO        		6.310E+16    -1.230        500.0

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH2O+CH3<=>HCO+CH4      		3.190E+01     3.360       4312.0

! Miller and Bowman, Progress in Energy and Combustion Sciences (1989) Vol. 15, pp. 287-338
CH3+CH<=>H+C2H3         		3.000E+13     0.000          0.0

! GRI-Mech 3.0 http://www.me.berkeley.edu/gri_mech/
! known to be fast reaction
CH3+CH2(S)<=>H+C2H4     		1.200E+13     0.000       -570.0

! Jasper et al., Journal of Physical Chemistry A (2007) Vol. 111, pp. 8699-8707
CH3+CH2<=>H+C2H4        		1.200E+15    -0.343        153.1

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
! Fast for sure
CH4+CH2(S)<=>CH3+CH3         	1.867E+13     0.000      -496.8

!! Yang et al., J. Phys. Chem. A 113: 8318 (2009). 
CH3+CH3(+M)=C2H6(+M)                   	8.878E+16	-1.16      774.5 
	LOW  			       /3.741E+50	-9.93     7389./ ! k0
	TROE 				/0.7548 158.0 32828. 46564. /                                ! Fcent   
 H2/3.0/ H2O/9.0/ CO/2.25/ CO2/3.0/ AR/1.0/ CH4/3.0/ C2H6/4.5/ N2/1.50/ 
 
!! Lim, et al., Proc. Combust. Inst. 25: 713(1994) 
! more direct measurement. smaller than Hanson group measurement
2CH3=H+C2H5                            	3.16E+13	0.00	 14665.  


!*********************************************************************************
!																				 !
!              		CH3O mechanism-HPMECH										 !
!																				 !
!*********************************************************************************

! The rate constant has been calculated by Stephen Klippenstein
! Troe fitting valid between 400 and 2000 K, 0.001 and 100 atm
! The Chaperon efficiency for Argon is derived from fitting of the Master-Equation results
CH3O(+M)<=>H+CH2O(+M)                  1.320E+16   -0.588    26772.1
LOW  / 1.326E+25   -2.981    22465.4 /
TROE / 0.1698 1.00E-09  807456.9  7029.4 /
H2/2.00/ H2O/6.00/ CO/1.50/ CO2/2.00/ CH4/2.00/ AR/0.67/ C2H6/3.00/ N2/1.00/ HE/0.8/ 

! Xu et al., Molecular Physics (2007) Vol. 105, pp. 2763-2776
CH3O+H<=>CH2O+H2        				3.500E+08     1.601       -708.6
Duplicate
CH3O+H<=>CH2O+H2        				3.320E+03     2.316      -1815.2
Duplicate

! Xu et al., Molecular Physics (2007) Vol. 105, pp. 2763-2776
CH3O+H<=>CH2(S)+H2O     				3.280E+12     0.088       -152.6

! estimated
CH3O+O=OH+CH2O          				8.000E+13     	0.00         0.  

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH3O+OH<=>CH2O+H2O               		1.810E+13     0.000          0.0


! Wantuck et al., Journal of Physical Chemistry (1987) Vol. 91, pp. 4653-4655
CH3O+O2<=>CH2O+HO2      				9.033E+13     0.000      11978.8
  DUPLICATE
CH3O+O2<=>CH2O+HO2      				2.168E+10     0.000       1748.7
  DUPLICATE

! Mousavipour and Homayoon, Journal of Physical Chemistry A (2011) Vol. 115, pp. 3291?300
! There are three channels producing the set of products CH2O + H2O2
! The first rate constant is the sum of the two first channels (involving the intermediate product)
CH3O+HO2<=>CH2O+H2O2    				1.420E+04     1.506       6295.3
Duplicate
CH3O+HO2<=>CH2O+H2O2    				7.566E-23    10.670      25357.9
Duplicate

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
! New calculations!
CH3O+CO<=>CH3+CO2                		1.570E+13     0.000      11804.0

! Tsang, Journal of Physical Chemical Reference Data (1987) Vol. 16, pp. 471-508
CH3O+HCO<=>CH2O+CH2O             		6.030E+12    0.000        0.0

! Tsang, Journal of Physical Chemical Reference Data (1987) Vol. 16, pp. 471-508
CH3O+HCO<=>CH3OH+CO              		9.040E+13    0.000        0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH3O+CH2<=>CH2O+CH3              		1.810E+13    0.000        0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH3O+CH3<=>CH2O+CH4              		2.410E+13    0.000        0.0

! Tsang, Journal of Physical Chemical Reference Data (1987) Vol. 16, pp. 471-508
CH3O+CH3O<=>CH3OH+CH2O           		2.000E+13    0.000        0.0
!! decreased by a factor of 3 since these rate wont be that fast

!*********************************************************************************
!																				 !
!              			CH2OH mechanism-HPMECH									 !
!																				 !
!*********************************************************************************

! The rate constant has been calculated by Stephen Klippenstein
! Troe fitting valid between 400 and 2000 K, 0.001 and 100 atm
! The Chaperon efficiency for Argon is derived from fitting of the Master-Equation results
CH2OH(+M)<=>H+CH2O(+M)                 1.211E-02    4.680    32592.0
LOW  / 1.924E+29   -4.037    33697.4 /
TROE / 0.1680 1.0E-09  3619.5  10985.0 /
H2/2.0/ H2O/6.0/ CO/1.5/ CO2/2.0/ CH4/2.0/ AR/0.665/ C2H6/3.0/ N2/1.0/
 CH3OH/3.0/

! The rate constant has been calculated by Stephen Klippenstein
! Troe fitting valid between 300 and 2000 K, 0.001 and 100 atm
! The rate constant below is for Nitrogen as the bath gas
CH2OH<=>CH3O                           3.797E+22   -4.681    35559.6
PLOG /    0.001       1.158E+18   -4.592    36016.8 /
PLOG /    0.010       3.810E+19   -4.628    35229.3 /
PLOG /    0.100       2.870E+21   -4.771    35111.7 /
PLOG /    1.000       3.797E+22   -4.681    35559.6 /
PLOG /    5.000       9.756E+22   -4.499    36133.6 /
PLOG /   10.000       1.449E+23   -4.416    36465.8 /
PLOG /   50.000       2.935E+23   -4.199    37365.2 /
PLOG /  100.000       2.423E+23   -4.046    37725.5 /

! Xu et al., Molecular Physics (2007) Vol. 105, pp. 2763-2776
CH2OH+H<=>CH2O+H2       			3.810E+06     1.870       134.0
Duplicate

! Xu et al., Molecular Physics (2007) Vol. 105, pp. 2763-2776
! Chemically activated route
CH2OH+H<=>CH2O+H2       			6.840E+03     2.281     -1394.9
Duplicate

! Xu et al., Molecular Physics (2007) Vol. 105, pp. 2763-2776
CH2OH+H<=>CH2(S)+H2O    			9.020E+09     0.870      -785.9

! Xu et al., Molecular Physics (2007) Vol. 105, pp. 2763-2776
CH2OH+H<=>CH3O+H        			2.460E+07     1.595      7194.1

! Seetula et al., Chemical Physics Letters (1994) Vol. 224, pp. 533-538
! Temperature range is 300-508 K
CH2OH+O<=>CH2O+OH       			6.564E+13     0.000       -693.2

! Tsang, Journal of Physical Chemical Reference Data (1987) Vol. 16, pp. 471-508
CH2OH+OH<=>H2O+CH2O     			2.40E+13      0.000         0.0

! Shocker et al., Journal of Physical Chemistry A (2007) Vol. 111, pp. 6622?627
CH2OH+O2<=>CH2O+HO2     			1.08E+12     	0.12      -594.2

! Mousavipour and Homayoon, Journal of Physical Chemistry A (2011) Vol. 115, pp. 3291?300
! There are two channels producing the set of products CH2O + H2O2
! The present rate constant is the sum of the two channels
CH2OH+HO2<=>CH2O+H2O2      			1.222E+12      0.257       -689.4

! Mousavipour and Homayoon, Journal of Physical Chemistry A (2011) Vol. 115, pp. 3291?300
! CH2OH+HO2<=>HOCHO+H2O     		3.600E+12   0.120   454.1

! Friedrichs et al., Int. J. Chem. Kin. (2004) Vol. 36, pp. 157-169
CH2OH+HCO<=>CH2O+CH2O   			1.500E+13     0.000         0.0
CH2OH+HCO<=>CH3OH+CO    			1.200E+13     0.000         0.0

! Tsang, Journal of Physical Chemical Reference Data (1987) Vol. 16, pp. 471-508
CH2OH+CH2<=>OH+C2H4       			2.410E+13     0.000         0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
! Scaled by 10
CH2OH+CH2<=>CH2O+CH3              	1.210E+13     0.000          0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH2OH+CH3<=>CH2O+CH4              	2.410E+12     0.000          0.0

! Tsang, Journal of Physical Chemical Reference Data (1987) Vol. 16, pp. 471-508
CH2OH+CH3O<=>CH2O+CH3OH 			2.400E+13     0.000         0.0

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH2OH+CH2OH<=>CH2O+CH3OH 			9.033E+12    0.000         0.0


!*********************************************************************************
!																				 !
!              			CH4 mechanism-HPMECH									 !
!																				 !
!*********************************************************************************
CH3+H(+M)=CH4(+M)        			3.41E+14    	0.00   	291.95
LOW/8.87E+35   -5.52  4411.25/
TROE/0.419  3165.06   177.35   204926.14/
H2/3.0/ H2O/9.0/ CO/2.30/ CO2/4.0/ AR/1.0/ CH4/3.0/ C2H6/4.0/ N2/1.50/ HE/1.1/ CH3OH/6.0/ O2/1.5/

! Sutherland et al., International Journal of Chemical Kinetics (2001) Vol. 33, pp. 669-684
! Valid between 348 and 1950 K
CH4+H<=>CH3+H2          			4.083E+03     3.156      8755.6

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH4+O<=>CH3+OH          			4.396E+05     2.500      6577.6

! Srinivasan et al., Journal of Physical Chemistry A (2005) Vol. 109, pp. 1857-1863
CH4+OH<=>CH3+H2O        			1.000E+06     2.180      2446.0

! Aguilera-Iparraguirre., Journal of Physical Chemistry A (2008) Vol. 112, pp. 7047-7054
CH4+HO2<=>CH3+H2O2      			1.130E+01     3.740     21009.7

! Bohland et al., Berichte der Bunsengesellschaft für Physikalische Chemie (1985) Vol. 89, pp. 1110-1116
CH4+CH2<=>CH3+CH3       			2.460E+06     2.000      8270.0

!*********************************************************************************
!																				 !
!             			 CH3OH mechanism-HPMECH							     	 !
!																				 !
!*********************************************************************************

! Jasper et al., Journal of Physical Chemistry A (2007) Vol. 111, pp. 3932-3950
! The Troe expression of Jasper has been fitted to follow the Troe format used in Chemkin
! The low pressure limit has been scaled by 1.42=1/0.70 (2.652E+52 x 1.42 = 3.766E+52) to set N2 as the bath gas
! The efficiency coefficients are taken from Li et al., 

! Jasper Paper
CH3OH(+M)<=>CH3+OH(+M)                            2.084E+18    -0.615   92549.9
LOW/ 3.789E+52   -9.547  105313.1 /
TROE/ 0.250  956.7  4213.7  9443.3 /
AR/0.70/ H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ CH3OH/3.0/ 

! Jasper Paper
CH3OH(+M)<=>CH2(S)+H2O(+M)                        5.246E+18    -1.135   91160.8
LOW/ 2.308E+50    -9.145  99105.9 /
TROE/  0.539  1538.8  3.4  13918.0 /
AR/0.70/ H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ CH3OH/3.0/ 

! Jasper Paper
! The present fitting is valid for pressures between 100 and 1000000 torr
! and temperatures between 750 and 3000 K
CH3OH(+M)<=>CH2O+H2(+M)                           1.660E+12     0.199   89678.5
LOW/ 6.190E+25    -2.750  84971.1 /
TROE/  0.014  737.2  740.2  206499.5 /
AR/0.70/ H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ CH3OH/3.0/ 

! Jasper Paper
! The present fitting is valid for pressures above 100 torr
! and temperatures between 750 and 3000 K
CH3OH(+M)<=>HCOH+H2(+M)                           2.917E+07     1.950   85035.0
LOW/ 7.786E+37    -5.994  86236.9 /
TROE/  0.686  1718.3  153.9  499615.0 /
AR/0.70/ H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/  CH3OH/3.0/ 

! Jasper paper, Bath gas is Argon
! The present fitting is valid between 750 and 3000 K
CH3OH<=>CH2OH+H                        4.089E+44   -9.428   107414.2 ! 1 atmosphere rate constant
PLOG /     0.000132      3.110E+34   -7.944   111085.7 /
PLOG /     0.001320      1.110E+37   -8.323   109174.3 /
PLOG /     0.013200      6.733E+38   -8.510   107101.1 /
PLOG /     0.132000      4.959E+41   -8.969   105978.8 /
PLOG /     1.320000      4.086E+44   -9.382   107251.7 /
PLOG /    13.200000      4.080E+45   -9.263   109268.3 /
PLOG /   132.000000      7.717E+43   -8.419   110568.1 /
PLOG / 13200.000000      1.638E+29   -3.838   105074.8 /


! Jasper paper, Bath gas is Argon
! The present fitting is valid between 750 and 3000 K
CH3OH<=>CH3O+H                         3.068E+34   -7.332   116789.8 ! 1 atmosphere rate constant
PLOG /     0.000132      9.241E+28   -7.012   134030.3 /
PLOG /     0.001320      9.218E+28   -6.689   130040.2 /
PLOG /     0.013200      2.179E+30   -6.772   127194.7 /
PLOG /     0.132000      3.517E+31   -6.819   121849.3 /
PLOG /     1.320000      3.053E+34   -7.292   115732.5 /
PLOG /    13.200000      2.060E+39   -8.158   114301.0 /
PLOG /   132.000000      3.311E+42   -8.531   117206.4 /
PLOG / 13200.000000      5.484E+39   -6.946   123154.3 /

! Moses et al. (Klippenstein), The Astrophysical Journal (2011) Vol. 737, Paper 15.
! QCISD(T)/CBS//QCISD(T)/cc-pVTZ calculations were performed with the spin-restricted formalism
CH3OH+H<=>CH2OH+H2               		6.564E+04    2.728     4451.3 
CH3OH+H<=>CH3O+H2                		4.107E+04    2.658     9226.6
! Moses et al. (Klippenstein), The Astrophysical Journal (2011) Vol. 737, Paper 15.
! QCISD(T)/CBS//QCISD(T)/cc-pVTZ calculations were performed with the spin-restricted formalism
CH3OH+H<=>CH3+H2O                		2.957E+05    2.485    20627.0 

! Lu et al., Journal of Chemical Physics (2005) Vol. 122, Paper No. 244314
! The overall rate constant was determined to be 1.650E+06 x T^2.25 x exp(-2980.8/RT)
! The branching ratio k(CH2OH)/ktotal was set to 0.99 at 300K, 0.95 at 1000K, and 0.90 at 2000K, and a 3-parameter fitting was applied.
CH3OH+O<=>CH2OH+OH                		3.332E+06    2.146     3050.3
CH3OH+O<=>CH3O+OH                 		4.322E+02    3.050     3528.5
 
! The branching ratios is assumed to be temperature independent and set to be 90/10 CH2OH/CH3O
! The rate is from Hanson group recent paper. It agrees with  MC Lin theory very well
CH3OH+OH<=>CH2OH+H2O             		5.740E+04    2.620      -681.
CH3OH+OH<=>CH3O+H2O              		0.574E+04    2.620      -681.

! Skodje et al., Journal of Physical Chemistry A (2010) Vol. 114, pp. 8286-8301
CH3OH+O2<=>CH2OH+HO2             		3.580E+05    2.270    42736.0

! The reaction of methanol with the hydroperoxy radical to generate the hydroxymethyl radical is the most sensitive reaction
! in the methanol subset at the temperatures typically used in flow reactors.
! Li et al. estimated a rate of 3.98 x 1E+13 x EXP(-19400/RT) by fitting the flow reactor data.
! Altarawneh et al. ( Journal of Computational Chemistry A (2011) Vol. 32, pp. ) computed
! a rate of 3.26 x 1E+13 x EXP(-18282/RT), while Skodje et al (Journnal of  Physical Chemistry A (2010) Vol. 114, pp. 8286-8301)
! published a rate equal to 2.28 x 1E-05 x T^5.06 x EXP(-10214/RT).
! The rate constant proposed by Skodje et al. is much smaller than the Li et al. rate
! Rate constants calculated by Alecu and Truhlar are herein adopted. They are of intermediate value between those of Li et al. and Skodje et al.
! They have been fitted in a double non-Arrenius expression between 150 and 3000 K.
! Alecu and Truhlar, Journal of Physical Chemistry A (2011) Vol. 115, pp. 14599-14611
CH3OH+HO2<=>CH3O+H2O2            		2.368E+02    3.204    20558.3
duplicate
CH3OH+HO2<=>CH3O+H2O2            		1.210E-02    4.157    16677.5
duplicate

CH3OH+HO2<=>CH2OH+H2O2           		2.404E-01    4.086    12842.3
duplicate
CH3OH+HO2<=>CH2OH+H2O2           		6.977E-10    6.172     7030.3
duplicate

! Johnson et al., Physical Chemistry Chemical Physics (2000) Vol. 2, pp. 2549-2553
! Assuming a branching ratio k(CH2OH)/k equal to 95%
CH3OH+CH<=>CH2+CH3O              		4.522E+17   -1.930        0.0
CH3OH+CH<=>CH2+CH2OH             		8.592E+18   -1.930        0.0

! Tsang, Journal of Physical Chemical Reference Data (1987) Vol. 16, pp. 471-508
CH3OH+CH2<=>CH3+CH3O             		1.443E+01    3.100     6935.0
CH3OH+CH2<=>CH3+CH2OH            		3.192E+01    3.200     7174.0

! Alecu and Truhlar, Journal of Physical Chemistry A (2011) Vol. 115, pp. 14599-14611
! Rate constants calculated by Alecu and Truhlar are herein adopted.
! They have been fitted in a double non-Arrenius expression between 150 and 3000 K.
CH3OH+CH3<=>CH2OH+CH4            		7.490E+00    3.493     7808.5
duplicate
CH3OH+CH3<=>CH2OH+CH4            		2.079E-12    6.622     1603.2
duplicate

CH3OH+CH3<=>CH3O+CH4             		6.475E+03    2.338     8761.0
duplicate
CH3OH+CH3<=>CH3O+CH4             		8.513E-09    5.089     2844.2
duplicate

! Estimation should be close to true number
CH3OH+CH2(S)<=>C2H4+H2O             	1.000E+13    0.000        0.0
CH3OH+CH2(S)<=>CH3+CH2OH            	1.000E+14    0.000        0.0

!*********************************************************************************
!																				 !
!              			CH3O2 mechanism-HPMECH							  		 !
!																				 !
!*********************************************************************************

! Fernandez et al., Journal of Physical Chemistry A (2006) Vol. 110, pp. 4442-4449
CH3+O2(+M)<=>CH3O2(+M)  				7.812E+09     0.900         0.0
                  LOW / 6.850E+24    -3.000         0.0 / 
TROE / 0.6000 1000.0 70.0 1700.0 /
H2/2.0/ H2O/6.0/ CH4/3.0/ CO/1.5/ CO2/2.0/ C2H6/3.0/
AR/0.7/ HE/0.70/  CH3OH/3.0/

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH3O2+CH2O<=>CH3O2H+HCO 			1.990E+12     0.000     11660.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH4+CH3O2<=>CH3+CH3O2H       		1.810E+11     0.000     18480.0

! Tsang, Journal of Physical Chemical Reference Data (1987) Vol. 16, pp. 471-508
CH3OH+CH3O2<=>CH2OH+CH3O2H   		1.810E+12     0.000     13710.0

! Keiffer et al., Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics (1988) Vol. 84, pp. 505-514
CH3O2+CH3<=>CH3O+CH3O        		5.080E+12     0.000     -1411.0

! Lightfoot et al., Atmospheric Environment Part A (1992) Vol. 26, pp. 1805-1961
CH3O2+HO2<=>CH3O2H+O2        		2.470E+11     0.000     -1570.0

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH3O2+CH3O2=>CH2O+CH3OH+O2   		5.118E+09    -0.105     -2544.5

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH3O2+CH3O2=>O2+CH3O+CH3O    		1.257E+11    -0.097      -316.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH3O2+H<=>CH3O+OH            		9.600E+13     0.000         0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH3O2+O<=>CH3O+O2            		3.600E+13     0.000         0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH3O2+OH<=>CH3OH+O2          		6.000E+13     0.000         0.0

! Lightfoot et al., Journal of the Chemical Society, Faraday Transactions (1991) Vol. 87, pp. 3213-3220
CH3O2H<=>CH3O+OH             		6.310E+14     0.000     42300.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
H2+CH3O2<=>H+CH3O2H          		1.500E+14     0.000     26030.0

!!==================================================================================================================
!!=================================================C2 SPECIES=======================================================
!!==================================================================================================================

!*********************************************************************************
!																				 !
!              			C2H mechanism-HPMECH							     	 !
!																				 !
!*********************************************************************************
C2H+H(+M)=C2H2(+M)                     	1.00E+17    	-1.00        0.  ! GRI-Mech 3.0
  LOW                                  /3.75E+33    	-4.80     1900./
  TROE /0.6464 132 1315 5566/                    
  H2/2.0/ H2O/6.0/ CH4/2.0/ CO/1.5/ CO2/2.0/ C2H6/3.0/ AR/0.7/ HE/0.8/    
!! not important in most cases    

!Baulch et al., J. Phys. Chem. Ref. Data, 34:757 (2005)
C2H+O=CH+CO                            	6.00E+13     	0.00       0.  ! 

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
C2H+OH<=>H+HCCO                      	2.000E+13     0.000      0.0

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
C2H+O2<=>HCO+CO                      	1.626E+14    -0.350      0.0

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
C2H+H2<=>H+C2H2                      	2.108E+06     2.320    882.3

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
C2H+HO2<=>HCCO+OH                    	1.806E+13     0.000      0.0

!Estimated not important, adding them may cause stiffness
!C2H+HCO=C2H2+CO						 	6.00E+13		0.00	  0.0
!C2H+CH3=C3H3+H						 	5.00E+13		0.00	  0.0

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
C2H+CH4<=>CH3+C2H2                   	2.168E+10     0.940    651.8

! estimated
C2H+CH3OH=C2H2+CH2OH                   	6.03E+13     	0.00        0.  
C2H+CH3OH=C2H2+CH3O                    	1.21E+13     	0.00        0.  

!*********************************************************************************
!																				 !
!              			C2O mechanism-HPMECH							     	 !
!																				 !
!*********************************************************************************

! Miller and Melius, Combustion and Flame (1992) Vol. 91, pp. 21-
C2O+H<=>CH+CO                        	5.000E+13     0.000      0.0
C2O+O<=>CO+CO                        	5.000E+13     0.000      0.0
C2O+OH=>CO+CO+H                      	2.000E+13     0.000      0.0
C2O+O2=>CO+CO+O                      	2.000E+13     0.000      0.0


!*********************************************************************************
!																				 !
!              			HCCO mechanism-HPMECH							     	 !
!																				 !
!*********************************************************************************

! Klippenstein et al., Proceedings of the Combustion Institute (2002) Vol. 29, pp. 1209-
HCCO+O2=>CO2+CO+H                    	4.780E+12    -0.140    1150.0
HCCO+O2=>CO+CO+OH                    	1.910E+11    -0.020    1023.0
HCCO+O2=>O+CO+HCO                    	2.180E+02     2.690    3541.0

! 
HCCO+OH<=>HCOH+CO                    	3.000E+13     0.000      0.0  
PLOG /   0.010   2.769E+13     0.09     -20. /
PLOG /   0.010  -1.402E+15    -0.28   10792. /
PLOG /   0.100   2.769E+13     0.09     -20. /
PLOG /   0.100  -1.402E+15    -0.28   10792. /
PLOG /   1.000   2.769E+13     0.09     -20. /
PLOG /   1.000  -1.402E+15    -0.28   10792. /
PLOG /  10.000   5.677E+12     0.31    -232. /
PLOG /  10.000  -2.920E+11     0.72    5000. /
PLOG / 100.000   3.756E+13     0.05      70. /
PLOG / 100.000  -6.803E+13     0.10   10302. /

HCCO+OH<=>CH2O+CO                    	3.000E+13     0.000      0.0  
PLOG /   0.010   3.768E+13    -0.06     156. /
PLOG /   0.010  -2.908E+15    -0.80    5071. /
PLOG /   0.100   3.768E+13    -0.06     156. /
PLOG /   0.100  -2.908E+15    -0.80    5071. /
PLOG /   1.000   3.768E+13    -0.06     156. /
PLOG /   1.000  -2.908E+15    -0.80    5071. /
PLOG /  10.000   2.095E+12     0.03      97. /
PLOG /  10.000  -1.577E+15    -0.72    4883. /
PLOG / 100.000   1.071E+13     0.11      52. /
PLOG / 100.000  -6.440E+17    -1.14    6914. /

HCCO+OH<=>CO+HCOH(T)                    2.871E+12     0.370     -24.  
HCOH(T)+M=HCOH+M						2.000E+13	  0.000      0.0
!HCCO+OH<=>C2O+H2O                    	3.000E+13     0.000      0.0  
HCCO+CH<=>C2H2+CO                    	5.000E+13     0.000      0.0
HCCO+CH2<=>C2H3+CO                   	3.000E+13     0.000      0.0
HCCO+HCCO=>C2H2+CO+CO                	1.000E+13     0.000      0.0

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
HCCO+O=>H+CO+CO                      	7.038E+13     0.000   -223.4
HCCO+O<=>CH+CO2                      	2.951E+13     0.000   1112.8

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
HCCO+H<=>CH2(S)+CO                   	0.70E+14     0.000      0.0

!*********************************************************************************
!																				 !
!              	C2H2 mechanism-HPMECH							     			 !
!																				 !
!*********************************************************************************

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
C2H2+O<=>CH2+CO                      	2.349E+08     1.400   2205.8
C2H2+O<=>HCCO+H                      	9.394E+08     1.400   2205.8

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
!O+C2H2<=>C2H+OH 					 	4.600E+19    -1.400 2.895E+04

! Senosiain et al., Journal of Physical Chemistry A (2005) Vol. 109, pp. 6045-6055
C2H2+OH<=>C2H+H2O                    	2.632E+06     2.140  17062.1

! Senosiain et al., Journal of Physical Chemistry A (2005) Vol. 109, pp. 6045-6055
C2H2+OH<=>H+HCCOH                    	2.415E+06     2.000  12714.1
PLOG /   0.010   2.800E+05     2.280  12420.0 /
PLOG /   0.025   7.467E+05     2.160  12549.2 /
PLOG /   0.100   1.776E+06     2.040  12670.4 /
PLOG /   1.000   2.415E+06     2.000  12714.1 /
PLOG /  10.000   3.210E+06     1.970  12811.5 /
PLOG / 100.000   7.347E+06     1.890  13604.4 /

C2H2+OH<=>CH2CO+H                    	7.528E+06     1.550   2106.4
PLOG /   0.010   1.578E+03     2.560   -844.6 /
PLOG /   0.025   1.518E+04     2.280   -292.1 /
PLOG /   0.100   3.017E+05     1.920    598.1 /
PLOG /   1.000   7.528E+06     1.550   2106.4 /
PLOG /  10.000   5.101E+06     1.650   3400.1 /
PLOG / 100.000   1.457E+04     2.450   4477.2 /

C2H2+OH<=>CH3+CO                     	1.277E+09     0.730   2579.4
PLOG /   0.010   4.757E+05     1.680   -329.9 /
PLOG /   0.025   4.372E+06     1.400    226.5 /
PLOG /   0.100   7.648E+07     1.050   1114.8 /
PLOG /   1.000   1.277E+09     0.730   2579.4 /
PLOG /  10.000   4.312E+08     0.920   3735.9 /
PLOG / 100.000   8.250E+05     1.770   4697.7 /

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
C2H2+O2<=>C2H+HO2                    	1.204E+13     0.000  74520.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
C2H2+HO2<=>CH2CO+OH                  	6.022E+09     0.000   7948.8

! Thiesemann, H.; MacNamara, J.; Taatjes, C. A. J. Phys. Chem. A 1997, 101, 1881
C2H2+CH=C3H2+H				         	1.00E+14		0.00	0. 

!88BOH/TEM; 86FRA/BHA
C2H2+CH2=C3H3+H                      	1.20E+13    	0.00   6620.  
!Daniela Polino, Stephen J Klippenstein, Lawrence B Harding, and Yuri Georgievski
! J. Phys. Chem. A, DOI: 10.1021/jp406246y
C2H2+CH2(S)=C3H3+H                   	3.97E+15    	-0.57     -4.85  !

!! from USC Mech II
C2H2+CH3 = pC3H4+H                           4.50E+06     1.86    11600.0  !99DAV/LAW RRKM 0.1 atm 
PLOG /    0.1     4.50E+06     1.86    11600.0/
PLOG /    1.0     2.56E+09     1.10    13644.0/
PLOG /    2.0     2.07E+10     0.85    14415.0/
PLOG /    5.0     2.51E+11     0.56    15453.0/
PLOG /    10.0     1.10E+12     0.39    16200.0/
PLOG /    100.0     2.10E+12     0.37    18100.0/

C2H2+CH3=aC3H4+H                           2.40E+09     0.91    20700.0  !99DAV/LAW RRKM 0.1 atm
PLOG /    0.1     2.40E+09     0.91    20700.0/
PLOG /    1.0     5.14E+09     0.86    22153.0/
PLOG /    2.0     1.33E+10     0.75    22811.0/
PLOG /    5.0     9.20E+10     0.54    23950.0/
PLOG /    10.0    5.10E+11     0.35    25000.0/
PLOG /    100.0   7.30E+12     0.11    28500.0/

C2H2+CH3=tC3H5                           6.80E+20    -4.16    18000.0  !99DAV/LAW RRKM 0.1 atm
PLOG /    0.1     6.80E+20    -4.16    18000.0 /
PLOG /    1.0     4.99E+22    -4.39    18850.0 /
PLOG /    2.0     6.00E+23    -4.60    19571.0/
PLOG /    5.0     7.31E+25    -5.06    21150.0/
PLOG /    10.0    9.30E+27    -5.55    22900.0/
PLOG /    100.0   3.80E+36    -7.58    31300.0/

C2H2+CH3=sC3H5                           1.40E+32    -7.14    10000.0  !99DAV/LAW RRKM 0.1 atm
PLOG /    0.1     1.40E+32    -7.14    10000.0/
PLOG /    1.0     3.20E+35    -7.76    13300.0/
PLOG /    10.0    2.40E+38    -8.21    17100.0/
PLOG /    100.0   1.40E+39    -8.06    20200.0/

C2H2+CH3=aC3H5                             8.20E+53    -13.32   33200.0  !99DAV/LAW RRKM 0.1 atm
PLOG /    0.1     8.20E+53    -13.32   33200.0/
PLOG /    1.0     2.68E+53    -12.82   35730.0/
PLOG /    2.0     3.64E+52    -12.46   36127.0/
PLOG /    5.0     1.04E+51    -11.89   36476.0/
PLOG /    10.0    4.40E+49    -11.40   36700.0/
PLOG /    100.0   3.80E+44     -9.63   37600.0/

! Baulch et al., J. Phys. Chem. Ref. Data, 34:757 (2005)
! Pilling group said the yield of this channel is close to 1
C2H2+C2H=C4H2+H                      		9.00E+13     0.00        0.  

!C2H2+C2H(+M)=nC4H3(+M)                   	8.300E+10    0.899   -363.00  !92WAN
!LOW   /1.240E+31   -4.718   1871.00  /
!TROE  /1.0 100. 5613. 13387.         /
!H2/2.0/ H2O/6.0/ CH4/2.0/ CO/1.5/ CO2/2.0/ C2H6/3.0/ C2H2/2.5/ C2H4/2.5/  
!C2H2+C2H(+M)=iC4H3 (+M)                   8.300E+10    0.899    -363.00 !92WAN
!LOW   /1.240E+31   -4.718    1871.00 /
!TROE   /1.0 100. 5613. 13387.        /
!H2/2.0/ H2O/6.0/ CH4/2.0/ CO/1.5/ CO2/2.0/ C2H6/3.0/ C2H2/2.5/ C2H4/2.5/ 										  

!===========H2CC chemistry=======

! Laskin and Wang, Chemical Physics Letters (1999) Vol. 303, pp. 43-49
! The rate constant is for Argon
! Wang et al., USC-Mech II,  http://ignis.usc.edu/USC_Mech_II.htm, May 2007.
C2H2(+M)<=>H2CC(+M)                  8.000E+14    -0.520  50750.0
LOW / 2.450E+15    -0.640  49700.0 /
H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ C2H2/2.50/ C2H4/2.50/

! Laskin and Wang, Chemical Physics Letters (1999) Vol. 303, pp. 43-49
! The rate constant is for Argon
! Wang et al., USC-Mech II,  http://ignis.usc.edu/USC_Mech_II.htm, May 2007.
H2CC+O2<=>CH2+CO2                    1.000E+13     0.000      0.0
H2CC+H<=>C2H2+H                      1.000E+14     0.000      0.0
H2CC+OH<=>CH2CO+H                    2.000E+13     0.000      0.0
H2CC+O<=>CH2+CO                      1.000E+14     0.000      0.0

!*********************************************************************************
!																				 !
!              			C2H2O mechanism-HPMECH							     	 !
!																				 !
!*********************************************************************************

! Senosiain et al., Journal of Physical Chemistry A (2006) Vol. 110, pp. 5772-
CH2CO+H<=>CH3+CO                     1.500E+09     1.450    2780.0

! GRI-Mech 3.0 http://www.me.berkeley.edu/gri_mech/
!CH2CO+H<=>HCCO+H2                    5.000E+13     0.000    8000.0

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH2CO+O<=>CH2+CO2                    1.084E+12     0.000    1351.3
CH2CO+O<=>CH2O+CO                    3.613E+11     0.000    1351.3
CH2CO+O<=>HCO+HCO                    3.613E+11     0.000    1351.3

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
! Baoshan Wang has calculated the PES
CH2CO+OH<=>CH3+CO2                   6.745E+11     0.000   -1013.0
CH2CO+OH<=>CH2OH+CO                  1.012E+12     0.000   -1013.0
CH2CO+OH<=>HCCO+H2O                  7.500E+12     0.000    2000.0

CH2(S)+CH2CO<=>C2H4+CO 				 1.200E+14     0.000      0.0

!estimated
H+HCCOH<=>H+CH2CO                    6.000E+13     0.000      0.0
OH+HCCOH=H2O+HCCO					 2.000E+13     0.000      0.0
O+HCCOH=HCCO+OH					     8.000E+13     0.000      0.0

!*********************************************************************************
!                                                                                !
!              	C2H3 mechanism-HPMECH							     			 !
!																				 !
!*********************************************************************************

! Miller and Klippenstein, Physical Chemistry Chemical Physics (2004), Vol. 6, pp. 1192-1202
! The Centering factor is not expressed in the standard format. A fitting in the Chemkin format has been applied and is valid between 300 and 1600K.
H+C2H2(+M)=C2H3(+M)             	1.71E+10     	1.266     2709. 
  LOW				       /6.35E+31    	-4.664     3780./
  TROE/ 0.78784  -1.021E4 1.0E-30/
 H2/2.4/ H2O/7.2/ CO/1.80/ CO2/3.6/ AR/1.0/ C2H2/3.6/ O2/1.20/ N2/1.20/ CH4/2.4/ HE/1.0/ 
 
! GRI-Mech 3.0 http://www.me.berkeley.edu/gri_mech/
H+C2H3(+M)=C2H4(+M)                    	6.08E+12     	0.27      280.  
  LOW                                  /1.40E+30    	-3.86     3320./
  TROE /0.782 207.5 2663 6095/                    
  H2/2.0/ H2O/6.0/ CH4/2.0/ CO/1.5/ CO2/2.0/ C2H6/3.0/ AR/0.7/ HE/0.8/  

! Baulch et al., J. Phys. Chem. Ref. Data, 34:757 (2005) 
!Phys. Chem. Chem. Phys., 1999, 1, 989-997 recommend 9.0E+13 take the middle 
C2H3+H=H2+C2H2                         6.00E+13     	0.00        0.  

! Harding et al., Proceedings of the Combustion Institute (2005) Vol. 30, pp. 985
! The rate constant of the abstraction channel is estimated to be 10% of the adition channel
C2H3+O<=>CH2CO+H                     	1.030E+13     0.205    -848.5
C2H3+O<=>OH+C2H2                     	1.030E+12     0.205    -848.5


C2H3+O2=C2H3O2                                    4.07E+27       -4.67    5222.0
  PLOG/1.000E-02    1.55E+24       -5.45    9662.0/
  PLOG/1.000E-02    1.78E-09        4.15    -4707.0/                            ! fit btw. 400 and 1250 K with MAE of 0.4%, 1.2%
  PLOG/1.000E-01    3.48E+56      -15.01    19160.0/
  PLOG/1.000E-01    2.36E+22       -4.52    2839.0/                             ! fit btw. 400 and 1350 K with MAE of 0.2%, 0.5%
  PLOG/3.160E-01    1.25E+64      -16.97    21290.0/
  PLOG/3.160E-01    2.00E+26       -5.43    2725.0/                             ! fit btw. 400 and 1450 K with MAE of 0.2%, 0.6%
  PLOG/1.000E+00    3.34E+61      -15.79    20150.0/
  PLOG/1.000E+00    6.13E+28       -5.89    3154.0/                             ! fit btw. 400 and 1550 K with MAE of 0.2%, 1.1%
  PLOG/3.160E+00    7.34E+53      -13.11    17300.0/
  PLOG/3.160E+00    2.14E+29       -5.80    3520.0/                             ! fit btw. 400 and 1650 K with MAE of 0.3%, 1.5%
  PLOG/1.000E+01    4.16E+48      -11.21    16000.0/
  PLOG/1.000E+01    3.48E+28       -5.37    3636.0/                             ! fit btw. 400 and 1750 K with MAE of 0.4%, 1.9%
  PLOG/3.160E+01    2.33E+43       -9.38    14810.0/
  PLOG/3.160E+01    3.32E+27       -4.95    3610.0/                             ! fit btw. 400 and 1900 K with MAE of 0.6%, 2.5%
  PLOG/1.000E+02    3.41E+39       -8.04    14360.0/
  PLOG/1.000E+02    1.03E+27       -4.72    3680.0/                             ! fit btw. 400 and 2100 K with MAE of 0.9%, 3.1%

C2H3+O2=CH2CHO+O                                1.60E+12        0.15    4205.0
  PLOG/1.000E-02    7.16E+20       -2.67    6742.0/
  PLOG/1.000E-02    1.24E+10        0.62    -277.6/                             ! fit btw. 400 and 2200 K with MAE of 0.1%, 0.2%
  PLOG/1.000E-01    7.02E+20       -2.67    6713.0/
  PLOG/1.000E-01    1.29E+10        0.62    -247.7/                             ! fit btw. 400 and 2200 K with MAE of 0.1%, 0.2%
  PLOG/3.160E-01    8.97E+20       -2.70    6724.0/
  PLOG/3.160E-01    1.51E+10        0.60    -162.5/                             ! fit btw. 400 and 2200 K with MAE of 0.1%, 0.2%
  PLOG/1.000E+00    6.45E+20       -2.65    6489.0/
  PLOG/1.000E+00    1.84E+10        0.58    38.4/                               ! fit btw. 400 and 2200 K with MAE of 0.1%, 0.2%
  PLOG/3.160E+00    4.09E+20       -2.53    6406.0/
  PLOG/3.160E+00    8.86E+09        0.67    248.0/                              ! fit btw. 400 and 2200 K with MAE of 0.1%, 0.1%
  PLOG/1.000E+01    1.60E+23       -3.22    8697.0/
  PLOG/1.000E+01    6.67E+09        0.72    778.1/                              ! fit btw. 400 and 2200 K with MAE of 0.1%, 0.3%
  PLOG/3.160E+01    2.85E+25       -3.77    11530.0/
  PLOG/3.160E+01    1.43E+09        0.92    1219.0/                             ! fit btw. 400 and 2200 K with MAE of 0.3%, 0.9%
  PLOG/1.000E+02    9.28E+25       -3.80    13910.0/
  PLOG/1.000E+02    7.14E+07        1.28    1401.0/                             ! fit btw. 400 and 2200 K with MAE of 0.7%, 2.3%

C2H3+O2=C2H2+HO2                                   6.49E+06        1.50    5218.0
  PLOG/1.000E-02    1.08E+07        1.28    3322.0/
  PLOG/1.000E-02    4.76E+01        2.75    -796.4/                             ! fit btw. 400 and 2200 K with MAE of 0.0%, 0.1%
  PLOG/1.000E-01    7.75E+06        1.33    3216.0/
  PLOG/1.000E-01    5.16E+01        2.73    -768.3/                             ! fit btw. 400 and 2200 K with MAE of 0.0%, 0.1%
  PLOG/3.160E-01    1.21E+07        1.27    3311.0/
  PLOG/3.160E-01    5.55E+01        2.73    -658.5/                             ! fit btw. 400 and 2200 K with MAE of 0.0%, 0.1%
  PLOG/1.000E+00    2.15E+07        1.19    3367.0/
  PLOG/1.000E+00    4.60E+01        2.76    -492.8/                             ! fit btw. 400 and 2200 K with MAE of 0.0%, 0.1%
  PLOG/3.160E+00    1.13E+08        1.00    3695.0/
  PLOG/3.160E+00    3.75E+00        3.07    -601.0/                             ! fit btw. 400 and 2200 K with MAE of 0.1%, 0.2%
  PLOG/1.000E+01    1.31E+11        0.12    5872.0/
  PLOG/1.000E+01    5.48E+00        3.07    85.7/                               ! fit btw. 400 and 2200 K with MAE of 0.1%, 0.3%
  PLOG/3.160E+01    1.19E+09        0.82    5617.0/
  PLOG/3.160E+01    4.47E+08       -0.00    955.0/                              ! fit btw. 400 and 2200 K with MAE of 0.8%, 1.7%
  PLOG/1.000E+02    1.06E+17       -1.45    12230.0/
  PLOG/1.000E+02    2.02E+01        2.94    1847.0/                             ! fit btw. 400 and 2200 K with MAE of 0.3%, 0.9%

C2H3+O2=OCHCHO+H                                     3.08E+12       -0.26    3277.0
  PLOG/1.000E-02    4.79E+14       -1.03    912.0/
  PLOG/1.000E-02    2.80E-04        4.04    -7019.0/                            ! fit btw. 400 and 2200 K with MAE of 0.2%, 0.6%
  PLOG/1.000E-01    5.03E+14       -1.04    922.5/
  PLOG/1.000E-01    3.45E-04        4.01    -6978.0/                            ! fit btw. 400 and 2200 K with MAE of 0.2%, 0.6%
  PLOG/3.160E-01    6.43E+14       -1.07    982.9/
  PLOG/3.160E-01    9.73E-04        3.89    -6768.0/                            ! fit btw. 400 and 2200 K with MAE of 0.2%, 0.6%
  PLOG/1.000E+00    3.73E+15       -1.29    1441.0/
  PLOG/1.000E+00    4.98E-01        3.15    -5496.0/                            ! fit btw. 400 and 2200 K with MAE of 0.1%, 0.6%
  PLOG/3.160E+00    2.44E+18       -2.13    3234.0/
  PLOG/3.160E+00    1.34E+05        1.67    -2931.0/                            ! fit btw. 400 and 2200 K with MAE of 0.2%, 0.8%
  PLOG/1.000E+01    1.30E+15       -1.09    2393.0/
  PLOG/1.000E+01    4.50E+15       -3.08    -4836.0/                            ! fit btw. 400 and 2200 K with MAE of 1.5%, 3.6%
  PLOG/3.160E+01    3.57E+33       -6.50    14910.0/
  PLOG/3.160E+01    3.84E+10        0.22    941.3/                              ! fit btw. 400 and 2200 K with MAE of 0.6%, 2.1%
  PLOG/1.000E+02    3.28E+31       -5.76    16250.0/
  PLOG/1.000E+02    2.75E+08        0.83    857.6/                              ! fit btw. 400 and 2200 K with MAE of 1.0%, 4.0%

C2H3+O2=CH2O+HCO                                   1.29E+16       -1.13    3791.0
  PLOG/1.000E-02    2.77E+36       -7.60    12640.0/
  PLOG/1.000E-02    5.04E+15       -1.28    515.3/                              ! fit btw. 400 and 2200 K with MAE of 0.2%, 0.6%
  PLOG/1.000E-01    2.70E+36       -7.60    12610.0/
  PLOG/1.000E-01    5.10E+15       -1.28    513.0/                              ! fit btw. 400 and 2200 K with MAE of 0.2%, 0.6%
  PLOG/3.160E-01    2.17E+36       -7.57    12490.0/
  PLOG/3.160E-01    5.34E+15       -1.29    520.6/                              ! fit btw. 400 and 2200 K with MAE of 0.2%, 0.6%
  PLOG/1.000E+00    3.03E+35       -7.32    11820.0/
  PLOG/1.000E+00    6.75E+15       -1.31    645.7/                              ! fit btw. 400 and 2200 K with MAE of 0.2%, 0.7%
  PLOG/3.160E+00    1.59E+36       -7.47    12460.0/
  PLOG/3.160E+00    1.05E+16       -1.36    1066.0/                             ! fit btw. 400 and 2200 K with MAE of 0.2%, 0.5%
  PLOG/1.000E+01    5.76E+35       -7.20    13430.0/
  PLOG/1.000E+01    2.84E+15       -1.18    1429.0/                             ! fit btw. 400 and 2200 K with MAE of 0.4%, 1.9%
  PLOG/3.160E+01    3.54E+20       -2.57    5578.0/
  PLOG/3.160E+01    1.14E+69      -19.23    14760.0/                            ! fit btw. 400 and 2200 K with MAE of 1.8%, 3.9%
  PLOG/1.000E+02    3.03E+33       -6.28    16000.0/
  PLOG/1.000E+02    4.68E+10        0.19    830.6/                              ! fit btw. 400 and 2200 K with MAE of 1.8%, 6.8%

C2H3+O2=CH2O+H+CO                                   1.29E+16       -1.13    3791.0
  PLOG/1.000E-02    6.47E+36       -7.60    12640.0/
  PLOG/1.000E-02    1.18E+16       -1.28    515.3/                              ! fit btw. 400 and 2200 K with MAE of 0.2%, 0.6%
  PLOG/1.000E-01    6.29E+36       -7.60    12610.0/
  PLOG/1.000E-01    1.19E+16       -1.28    513.0/                              ! fit btw. 400 and 2200 K with MAE of 0.2%, 0.6%
  PLOG/3.160E-01    5.05E+36       -7.57    12490.0/
  PLOG/3.160E-01    1.25E+16       -1.29    520.6/                              ! fit btw. 400 and 2200 K with MAE of 0.2%, 0.6%
  PLOG/1.000E+00    7.07E+35       -7.32    11820.0/
  PLOG/1.000E+00    1.58E+16       -1.31    645.7/                              ! fit btw. 400 and 2200 K with MAE of 0.2%, 0.7%
  PLOG/3.160E+00    3.72E+36       -7.47    12460.0/
  PLOG/3.160E+00    2.44E+16       -1.36    1066.0/                             ! fit btw. 400 and 2200 K with MAE of 0.2%, 0.5%
  PLOG/1.000E+01    1.34E+36       -7.20    13430.0/
  PLOG/1.000E+01    6.64E+15       -1.18    1429.0/                             ! fit btw. 400 and 2200 K with MAE of 0.4%, 1.9%
  PLOG/3.160E+01    8.26E+20       -2.57    5578.0/
  PLOG/3.160E+01    2.66E+69      -19.23    14760.0/                            ! fit btw. 400 and 2200 K with MAE of 1.8%, 3.9%
  PLOG/1.000E+02    7.07E+33       -6.28    16000.0/
  PLOG/1.000E+02    1.09E+11        0.19    830.6/                              ! fit btw. 400 and 2200 K with MAE of 1.8%, 6.8%

C2H3O2=CH2O+HCO                                  1.19E+20       -2.29    30170.0
  PLOG/1.000E-02    1.66E+174      -55.52    60320.0/
  PLOG/1.000E-02    2.27E+35       -7.97    31280.0/                            ! fit btw. 400 and 1250 K with MAE of 1.5%, 4.0%
  PLOG/1.000E-01    9.03E+66      -17.25    48120.0/
  PLOG/1.000E-01    2.08E+26       -4.96    28780.0/                            ! fit btw. 400 and 1350 K with MAE of 0.4%, 1.1%
  PLOG/3.160E-01    1.82E+43       -9.87    37960.0/
  PLOG/3.160E-01    1.45E+20       -3.08    26630.0/                            ! fit btw. 400 and 1450 K with MAE of 1.0%, 1.8%
  PLOG/1.000E+00    8.64E+33       -6.88    34370.0/
  PLOG/1.000E+00    1.06E+130      -39.38    54700.0/                           ! fit btw. 400 and 1550 K with MAE of 1.2%, 3.2%
  PLOG/3.160E+00    7.29E+171      -43.53    191900.0/
  PLOG/3.160E+00    2.35E+34       -6.87    35700.0/                            ! fit btw. 550 and 1650 K with MAE of 0.9%, 4.4%
  PLOG/1.000E+01    1.03E+32       -6.06    35500.0/
  PLOG/1.000E+01    2.18E+175      -53.78    68500.0/                           ! fit btw. 450 and 1750 K with MAE of 2.6%, 13.6%
  PLOG/3.160E+01    1.85E+34       -6.57    38510.0/
  PLOG/3.160E+01    1.07E+185      -54.22    88990.0/                           ! fit btw. 550 and 1900 K with MAE of 2.0%, 5.4%
  PLOG/1.000E+02    5.70E+29       -5.19    36800.0/
  PLOG/1.000E+02    4.68E+02        1.81    18100.0/                            ! fit btw. 400 and 2100 K with MAE of 4.6%, 10.6%

C2H3O2=CH2O+H+CO                                  1.19E+20       -2.29    30170.0
  PLOG/1.000E-02    3.88E+174      -55.52    60320.0/
  PLOG/1.000E-02    5.29E+35       -7.97    31280.0/                            ! fit btw. 400 and 1250 K with MAE of 1.5%, 4.0%
  PLOG/1.000E-01    2.11E+67      -17.25    48120.0/
  PLOG/1.000E-01    4.85E+26       -4.96    28780.0/                            ! fit btw. 400 and 1350 K with MAE of 0.4%, 1.1%
  PLOG/3.160E-01    4.26E+43       -9.87    37960.0/
  PLOG/3.160E-01    3.37E+20       -3.08    26630.0/                            ! fit btw. 400 and 1450 K with MAE of 1.0%, 1.8%
  PLOG/1.000E+00    2.02E+34       -6.88    34370.0/
  PLOG/1.000E+00    2.46E+130      -39.38    54700.0/                           ! fit btw. 400 and 1550 K with MAE of 1.2%, 3.2%
  PLOG/3.160E+00    1.70E+172      -43.53    191900.0/
  PLOG/3.160E+00    5.49E+34       -6.87    35700.0/                            ! fit btw. 550 and 1650 K with MAE of 0.9%, 4.4%
  PLOG/1.000E+01    2.40E+32       -6.06    35500.0/
  PLOG/1.000E+01    5.09E+175      -53.78    68500.0/                           ! fit btw. 450 and 1750 K with MAE of 2.6%, 13.6%
  PLOG/3.160E+01    4.32E+34       -6.57    38510.0/
  PLOG/3.160E+01    2.49E+185      -54.22    88990.0/                           ! fit btw. 550 and 1900 K with MAE of 2.0%, 5.4%
  PLOG/1.000E+02    1.33E+30       -5.19    36800.0/
  PLOG/1.000E+02    1.09E+03        1.81    18100.0/                            ! fit btw. 400 and 2100 K with MAE of 4.6%, 10.6%

H+C2H3O2=CH2CHO+OH						6.00E+13	  0.000      0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
C2H3+OH<=>C2H2+H2O                   	3.011E+13     0.000      0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
C2H3+OH<=>CH2CHO+H                   	3.011E+13     0.000      0.0

! Wang et al., USC-Mech II,  http://ignis.usc.edu/USC_Mech_II.htm, May 2007.
C2H3+HO2<=>CH2CHO+OH                 	1.000E+13     0.000      0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
C2H3+CH2O<=>C2H4+HCO                 	5.420E+03     2.810   5862.2

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
!! too fast decrease by a factor of 8
C2H3+HCO<=>C2H4+CO                   	1.033E+13     0.000      0.0

!estimated
C2H3+CH2=CH3+C2H2		             	2.00E+13		0.00	    0.

! J. Phys. Chem. A 2002, 106, 6952-6966
C2H3+CH3=C2H2+CH4                    	9.00E+12    	0.000     -770. 

!Tsang and Hampson, J. Phys. Chem. Ref. Data, 15:1087 (1986)
C2H3+CH3(+M)=C3H6(+M)                	2.50E+13       0.000       0.00 
 LOW  / 4.270E+58  -11.940    9769.80 /
 TROE / 0.175  1340.6 60000.0 10139.8 /
 H2/2/ H2O/6/ CH4/2/ CO/1.5/ CO2/2/ C2H6/3/ AR/0.7/C2H2/3.00/ C2H4/3.00/ HE/0.7/

! There is a paper need read carefully
!C2H3+CH3=aC3H5+H                       1.50E+24   -2.830    18618.0 ! question??
!C2H3+C2H2=C4H4+H						1.32E+12  0.163  	8312.
! Wang et al., USC-Mech II,  http://ignis.usc.edu/USC_Mech_II.htm, May 2007.

C2H3+C2H2=C4H4+H                       7.20E+13     -0.48    6100.   
 PLOG  /0.013     7.20E+13     -0.48    6100./
 PLOG  /0.118     4.60E+16     -1.25    8400./
 PLOG  /1.00      2.00E+18     -1.68   10600. /
 PLOG  /10.00     4.90E+16     -1.13   11800./

C2H3+C2H2=nC4H5                          1.10E+31     -7.14    5600.   
 PLOG  /0.013     1.10E+31     -7.14    5600./
 PLOG  /0.118     2.40E+31     -6.95    5600./
 PLOG  /1.00      9.30E+38     -8.76   12000. /
 PLOG  /10.00     8.10E+37     -8.09   13400./

C2H3+C2H2=iC4H5                          5.00E+34     -8.42    7900.   
 PLOG  /0.013     5.00E+34     -8.42    7900./
 PLOG  /0.118     1.00E+37     -8.77    9800./
 PLOG  /1.00      1.60E+46    -10.98   18600. /
 PLOG  /10.00     5.10E+53    -12.64   28800./

!C2H3+C2H3=C4H6-13                           7.00E+57    -13.82   17629.   
! PLOG  /0.026     7.00E+57    -13.82   17629./
! PLOG  /0.118     1.50E+52    -11.97   16056./
! PLOG  /1.00      1.50E+42     -8.84   12483. /

C2H3+C2H3=iC4H5+H                      1.50E+30     -4.95   12958.   
 PLOG  /0.026     1.50E+30     -4.95   12958. /
 PLOG  /0.118     7.20E+28     -4.49   14273./
 PLOG  /1.00      1.20E+22     -2.44   13654. /

C2H3+C2H3=nC4H5+H                      1.10E+24     -3.28   12395.   
 PLOG  /0.026     1.10E+24     -3.28   12395. /
 PLOG  /0.118     4.60E+24     -3.38   14650./
 PLOG  /1.00      2.40E+20     -2.04   15361. /

C2H3+C2H3=C2H2+C2H4                  1.80E+12    0.00       -800.  ! J. Phys. Chem. A 2009, 113, 1278?286
C2H3+C2H3=CH3+C3H3			         3.00E+12	  0.00      -800.
C2H+C2H3=C2H2+C2H2			         2.00E+13	  0.00         0.  !estimated

!*********************************************************************************
!																				 !
!              			C2H3O mechanism-HPMECH							     	 !
!																				 !
!*********************************************************************************

! Senosiain et al., Journal of Physical Chemistry A (2006) Vol. 110, pp. 5772-5781
CH2CHO(+M)=H+CH2CO(+M)			1.41E+25       -3.13     50483.
	LOW 			       /9.12E+29       -3.93     43347. /  
 	TROE    /0.585 32.8 1.63E+08 6.99E+04 /
  H2/3.0/ H2O/9.0/ CO/2.25/ CO2/3.0/ AR/1.0/ C2H2/4.5/ N2/1.5/ O2/1.5/ CH3CHO/4.5/ C2H6/4.5/

CH2CHO(+M)=CH3+CO(+M)			3.45E+18       -1.54     43173.
	LOW 			       /1.87E+25       -2.62     31596. /  
 	TROE    /0.223 10.0 2.68E+03 6.99E+04 /
  H2/3.0/ H2O/9.0/ CO/2.25/ CO2/3.0/ AR/1.0/ C2H2/4.5/ N2/1.5/ O2/1.5/ CH3CHO/4.5/ C2H6/4.5/

CH3CO(+M)=CH3+CO(+M)			9.24E+14       -0.13     18399.
	LOW 			       /1.64E+19       -1.07     14646. /  
 	TROE    /0.210 10.0 7.96E+06 6.99E+04 /
  H2/3.0/ H2O/9.0/ CO/2.25/ CO2/3.0/ AR/1.0/ C2H2/4.5/ N2/1.5/ O2/1.5/ CH3CHO/4.5/ C2H6/4.5/ 

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH3CO+H<=>CH3+HCO                    9.635E+13     0.000       0.0

! Estimation
CH3CO+O<=>CH2CO+OH                   1.000E+13     0.000       0.0

! Bartels et al.,Symposium  International on Combustion (1991) Vol. 23, pp. 131-138
! Scaled by a factor 2
! Original rate is 1.2E+14 mol.cm^-3.s^-1 at 298 K, but this reaction is radical-radical reaction, the rate will decrease to two thirds at higher temp
CH3CO+O<=>CH3+CO2                    6.000E+13     0.000       0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH3CO+OH<=>CH2CO+H2O                 1.204E+13     0.000       0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH3CO+OH<=>CH3+CO+OH                 3.011E+13     0.000       0.0

! Estimation
CH3CO+CH2<=>CH2CO+CH3                1.810E+13     0.000       0.0

! Estimation
CH2CHO+H<=>CH3+HCO                   8.000E+13     0.000       0.0
CH2CHO+H<=>CH2CO+H2                  2.000E+13     0.000       0.0

! Estimation
CH2CHO+O<=>CH2O+HCO                  5.000E+13     0.000       0.0

! GRI-Mech 3.0 http://www.me.berkeley.edu/gri_mech/
CH2CHO+OH<=>H2O+CH2CO                1.200E+13     0.000       0.0
CH2CHO+OH<=>HCO+CH2OH                3.010E+13     0.000       0.0

! Lee et al., Journal of Physical Chemistry A (2003) Vol. 107, pp. 3778-
CH2CHO+O2<=>CH2CO+HO2                1.880E+05     2.370   23728.0
CH2CHO+O2<=>CO+CH2O+OH               2.680E+17    -1.840    6530.0

!*********************************************************************************
!																				 !
!              	C2H4 mechanism-HPMECH							     			 !
!																				 !
!*********************************************************************************

! GRI-Mech 3.0 http://www.me.berkeley.edu/gri_mech/
C2H4(+M)<=>C2H2+H2(+M)               8.000E+12     0.440  88770.0
LOW / 1.580E+51    -9.310  97800.0 / 
TROE / 0.7345  180.0  1035.0  5417.0 /
H2/2.0/ H2O/6.0/ CH4/2.0/ CO/1.5/ CO2/2.0/ C2H6/3.0/
AR/0.7/ HE/0.70/  CH3OH/3.0/


! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
C2H4+H<=>C2H3+H2                     2.349E+02     3.620  11267.4

! Nguyen, et al., Journal of Physical Chemistry A (2005) Vol. 109, pp. 7489-7499
! The overall rate is 1.018E+08 x T^1.66 x EXP(-657.8/RT).
! The temperature dependent branching ratios of the six channels are given in Table 7 of the paper.
! The present rates are a fit on the temperature dependent rate constants for each channel.
C2H4+O<=>H+CH2CHO                    1.417E+09     1.105    880.1
C2H4+O<=>CH2+CH2O                    9.547E+05     2.121   1233.8
C2H4+O<=>CH3+HCO                     3.696E+08     1.368    875.8
C2H4+O<=>CH3CO+H                     3.134E+04     2.325    384.9
C2H4+O<=>CH2CO+H2                    4.032E+04     2.282    341.4
C2H4+O<=>CH4+CO                      1.275E+05     2.108    449.7

! Senosiain et al., Journal of Physical Chemistry A (2006) Vol. 110, pp. 6960-6970
C2H4+OH<=>C2H3+H2O                   1.310E-01     4.200   -860.0

! Senosiain et al., Journal of Physical Chemistry A (2006) Vol. 110, pp. 6960-6970
! Bath gas is N2
C2H4+OH<=>CH3+CH2O                   1.776E+05     1.680   2060.7
PLOG /   0.010     5.348E+00     2.920  -1732.8 / 
PLOG /   0.025     3.186E+01     2.710  -1172.4 /
PLOG /   0.100     5.552E+02     2.360    180.8 / 
PLOG /   1.000     1.776E+05     1.680   2060.7 / 
PLOG /  10.000     2.373E+09     0.560   6007.3 / 
PLOG / 100.000     2.758E+13     0.500  11456.2 /  

! Senosiain et al., Journal of Physical Chemistry A (2006) Vol. 110, pp. 6960-6970
! Bath gas is N2
C2H4+OH<=>CH3CHO+H                   2.379E-02     3.910   1722.9
PLOG /   0.010     2.373E-07     5.300  -2050.8 /
PLOG /   0.025     8.732E-05     4.570   -618.0 /
PLOG /   0.100     4.029E-01     3.540   1881.9 /
PLOG /   1.000     2.379E-02     3.910   1722.9 /
PLOG /  10.000     8.250E+08     1.010  10508.3 /
PLOG / 100.000     6.805E+09     0.810  13868.7 /

! Senosiain et al., Journal of Physical Chemistry A (2006) Vol. 110, pp. 6960-6970
! Bath gas is N2
C2H4+OH<=>CH2CHOH+H                  3.192E+05     2.190   5256.1
PLOG /   0.010     1.036E+04     2.600   4121.5 /
PLOG /   0.025     1.072E+04     2.600   4129.4 /
PLOG /   0.100     1.524E+04     2.560   4238.7 /
PLOG /   1.000     3.192E+05     2.190   5256.1 /
PLOG /  10.000     1.939E+08     1.430   7829.6 /
PLOG / 100.000     8.551E+10     0.750  11492.0 /

! The rate below are the sum of the two non-Arrehnius expression given in the paper
! Actually, CH2CH2OH should not be only the only product, but all the three C2H5O isomers
!
C2H4+OH<=>CH2CH2OH                   3.765E+36    -7.803   7024.5
PLOG /   0.010     6.105E+43   -10.624   7959.5 /
PLOG /   0.025     3.593E+37    -8.642   5236.9 /
PLOG /   0.100     2.459E+35    -7.786   4979.0 /
PLOG /   1.000     3.765E+36    -7.803   7024.5 /
PLOG /  10.000     1.351E+34    -6.740   7889.2 /
PLOG / 100.000     1.050E+27    -4.391   6253.7 /

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
C2H4+O2<=>C2H3+HO2                   4.215E+13     0.000  57628.8

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
!C2H4+HO2<=>C2H4O1-2+OH               3.794E+12     0.000  17864.9

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
C2H4+HO2<=>CH3CHO+OH                 6.022E+09     0.000   7948.8

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH4+CH<=>H+C2H4                      1.325E+16    -0.940        57.6

! ! Estimated for whole temp range
!! Phys. Chem. Chem. Phys., 2009, 11, 655?64
C2H4+CH=aC3H4+H                      1.70E+14    -0.31        0.  
! Baulch et al., J. Phys. Chem. Ref. Data, 34:757 (2005)
C2H4+CH2=aC3H5+H                     3.20E+12     0.00     5285.  
C2H4+CH2(S)=aC3H5+H                  4.53E+13     0.00     -556.  
C2H4+CH3=C2H3+CH4                    4.16E+12     0.00    11130.  
!  estimated
C2H4+C2H=C4H4+H                      4.70E+13     0.00     -270.  

!*********************************************************************************
!																				 !
!              		C2H4O mechanism-HPMECH							     		 !
!																				 !
!*********************************************************************************

! Sivaramakrishnan et al., Journal of Physical Chemistry A (2010) Vol. 114, pp. 755-764
! Low presure limit scaled by 1.42 = 1/0.70 (1.144E+59 x 1.42 = 1.634E+59) to set N2 as the bath gas
CH3CHO(+M)<=>CH3+HCO(+M)               2.720E+22    -1.740   86355.0  
LOW / 1.634E+59   -11.300   95912.0 /
TROE / 0.6840  2706.0  399.1 6540.0 /
H2/2.0/ H2O/6.0/ CO/1.0/ CO2/2.0/ AR/0.7/ C2H2/3.0/ O2/2.0/ 

! Sivaramakrishnan et al., Journal of Physical Chemistry A (2010) Vol. 114, pp. 755-764
CH3CHO+H<=>CH2CHO+H2                   2.722E+03     3.100    5206.5
CH3CHO+H<=>CH3CO+H2                    1.313E+05     2.580    1220.1

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH3CHO+O<=>CH3CO+OH                    5.841E+12     0.000    1808.4

! Estimation (rate is higher than OH+C2H6 at low T, but about 60% OH+C2H6 at high T)
CH3CHO+OH<=>CH3CO+H2O                  6.000E+13     0.000    3000.0

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH3CHO+O2<=>CH3CO+HO2                  1.204E+05     2.500   37558.0

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH3CHO+HO2<=>CH3CO+H2O2                4.095E+04     2.500   10204.0

! Yasunaga et al., International Journal of Chemical Kinetics (2008) Vol. 40, pp. 73-
CH3CHO+HO2<=>CH2CHO+H2O2               3.000E+12     0.000   11923.0

! Estimation
CH3CHO+CH<=>CH2CO+CH3                  6.000E+13     0.000       0.0
CH3CHO+CH<=>C2H4+HCO                   2.000E+13     0.000       0.0

! Bohland et al., Berichte der Bunsengesellschaft für Physikalische Chemie (1985) Vol. 89, pp. 1110-1116
CH3CHO+CH2<=>CH2CHO+CH3                1.660E+12     0.000    3517.0

! Baulch et al., Journal of Physical Chemical Reference Data (2005) Vol. 34, pp. 757-1397
CH3CHO+CH3<=>CH3CO+CH4                 3.493E-08     6.210    1629.5

!! all the rates are from G. Black, H.J. Curran, S. Pichon, J.M. Simmie, V. Zhukov, Combust. Flame 157 (2010) 363-373.
CH2CHOH+OH=CH2CHO+H2O                  3.33E+09 	1.10 	  541.  ! 
CH2CHOH+H=CH2CHO+H2                    9.81E+02     3.37     3537.  ! 
CH2CHOH+H=CH3CHO+H                     2.00E+13     0.00        0.  ! 
CH2CHOH+O=CH2CHO+OH                    1.88E+06 	1.90 	 -860.  ! 
CH2CHOH+HO2=CH2CHO+H2O2 		       3.40E+03 	2.50 	 8922.  !
CH2CHOH+CH3=CH2CHO+CH4 				   2.03E-08     5.90     1052.  !

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! OXIRANE C2H4O1-2 REACTION SET
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!C2H4O1-2<=>CH3+HCO                 	   3.630E+13     0.000    57200.0
!C2H4O1-2<=>CH3CHO                      7.407E+12     0.000    53800.0
!C2H4O1-2+OH<=>C2H3O1-2+H2O             1.780E+13     0.000     3610.0
!C2H4O1-2+H<=>C2H3O1-2+H2               8.000E+13     0.000     9680.0
!C2H4O1-2+HO2<=>C2H3O1-2+H2O2           1.130E+13     0.000    30430.0

!C2H3O1-2<=>CH3CO                       8.500E+14     0.000    14000.0
!C2H3O1-2<=>CH2CHO                      1.000E+14     0.000    14000.0

!*********************************************************************************
!																				 !
!              		C2H5 mechanism-HPMECH							     		 !
!																				 !
!*********************************************************************************

! Miller and Klippenstein,  Physical Chemistry Chemical Physics (2004), Vol. 6,pp. 1192-1202
C2H4+H(+M)=C2H5(+M)                    	1.37E+09		1.46      1355.  ! Miller JA et al., PCCP 6:1192(2004)
	LOW			       /1.026E+39  	-6.642   5769./
	TROE				/-0.569  299. -9147. 152.4/
 H2/2.0/ H2O/6.0/ CO/1.40/ CO2/2.0/ AR/1.0/ C2H2/3.0/ O2/1.20/ N2/1.20/ CH4/2.0/ HE/1.0/ C2H6/3.0/

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
C2H5+H<=>C2H4+H2                       4.000E+13     0.000        0.0

! Hack et al., Proceeding of the Combustion Institute (2002) Vol. 29, pp. 1247-1255
! The recommended overall rate is 1.04 x 10^14 cm^3.mol^-1.s^-1
! The branching ratio is somehow uncertain
C2H5+O<=>CH3+CH2O                      3.200E+13     0.000        0.0
C2H5+O<=>H+CH3CHO                      4.400E+13     0.000        0.0
C2H5+O<=>OH+C2H4                       2.400E+13     0.000        0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
C2H5+OH<=>C2H4+H2O                     2.409E+13     0.000        0.0

! Estimation
C2H5+OH<=>CH3+CH2OH                    3.000E+13     0.000        0.0

! Miller et al.,  Proceeding of the Combustion Institute (2000) Vol. 28, pp. 1479-1486
C2H5+O2<=>C2H4+HO2                     1.921E+07     1.020    -2035.0

! Estimation
! Similar to CH3+HO2<=>CH3O+OH
!C2H5+HO2<=>C2H5O+OH                    1.000E+13     0.000        0.0 

!  Dobis et al., J. Am. Chem. Soc. 115:8798(1993)
C2H5+HO2<=>C2H4+H2O2                   2.010E+12     0.000        0.0 

!  estimated
C2H5+CH=H+aC3H5                        5.00E+13     0.00        0.  

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
C2H5+CH2<=>C2H4+CH3                    1.810E+13     0.000        0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
C2H5+CH2(S)<=>C2H4+CH3                 9.000E+12     0.000        0.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
CH3+C2H5<=>CH4+C2H4                    6.000E+12     0.000        0.0

! Estimation
!C2H5+CH2OH<=>C2H4+CH3OH                1.000E+13     0.000        0.0
!C2H5+CH2OH<=>C2H6+CH2O                 1.000E+13     0.000        0.0
!C2H5+CH3O<=>C2H6+CH2O                  1.000E+13     0.000        0.0
!C2H5+C2H=C2H2+C2H4                     1.00E+13      0.00        0.  
!C2H5+C2H=C3H3+CH3                      2.00E+13      0.00        0.  
!C2H5+C2H3=aC3H5+CH3                    3.00E+13      0.00        0.  
!C2H5+C2H3<=>C2H4+C2H4                  1.000E+13     0.000        0.0

!*********************************************************************************
!																				 !
!              				C2H5O mechanism-HPMECH							  	 !
!																				 !
!*********************************************************************************

! Xu et al. ChemPhysChem (2009) Vol. 10, pp. 972-982
! The rate constants proposed in the paer have strange activation energies.
! The present Troe fitting is a fit on the PLOG format between 0.5 and 100 atm.
! The low pressure limit has been scaled by 1.42 to set N2 as the bath gas: 1.42 x 7.307E-22 = 1.038E-21
!C2H5O(+M)<=>CH3+CH2O(+M)     1.533E+07    -1.121    21612.4
!LOW / 1.038E-21    10.618    -9021.5 /
!TROE / 0.531  39.8  812.0  7378.3 /
!AR/0.70/ HE/0.70/ H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
!CH3OH/3.0/ C2H5OH /3.00/ 

! Xu et al. ChemPhysChem (2009) Vol. 10, pp. 972-982
! The rate constants proposed in the paer have strange activation energies.
! The present Troe fitting is a fit on the PLOG format between 0.01 and 100 atm.
! The low pressure limit has been scaled by 1.42 to set N2 as the bath gas: 1.42 x 4.428E-23 = 1.038E-21
!C2H5O(+M)<=>CH3CHO+H(+M)     2.074E+13    -0.306    19098.8
!LOW / 6.288E-23    11.057    -8127.0 /
!TROE / 0.7550  16.7  535.4  7178.6 /
!AR/0.70/ HE/0.70/ H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
!CH3OH/3.0/ C2H5OH /3.00/ 

!estimated
!C2H5O+H=CH3+CH2OH      		3.00E+13     	0.00        0.  
!C2H5O+H=C2H4+H2O       		3.00E+13     	0.00        0.  
!C2H5O+H=CH3CHO+H2       		3.00E+13     	0.00        0.  
!C2H5O+OH=CH3CHO+H2O    		2.00E+13     	0.00        0.  

! Xu et al. ChemPhysChem (2009) Vol. 10, pp. 972-982
! The rate constants proposed in the paer have strange activation energies.
! The present Troe fitting is a fit on the PLOG format between 0.5 and 100 atm.
! The low pressure limit has been scaled by 1.42 to set N2 as the bath gas: 1.42 x 1.380E+15 = 1.038E-21
!CH3CHOH(+M)<=>CH3CHO+H(+M)           2.765E-07     5.729    22669.9
!LOW / 1.960E+15     0.156    25152.5 /
!TROE / 0.105  707.7  784.1  17757.0 /
!AR/0.70/ HE/0.70/ H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/
!CH3OH/3.0/ C2H5OH /3.00/ 
               
!CH3CHOH+O2=CH3CHO+HO2    		1.00E+13     	0.00        0.  ! Judit Zador et al., Proc Combust Inst 32(2009)271-277
!! good when T>600K
!CH3CHOH+O=CH3CHO+OH      		0.60E+14     	0.00        0.  ! estimated
!CH3CHOH+H=C2H4+H2O       		3.00E+13     	0.00        0.  ! estimated
!CH3CHOH+H=CH3+CH2OH      		3.00E+13     	0.00        0.  ! estimated
!CH3CHOH+H=CH3CHO+H2     		3.00E+13     	0.00        0.  ! estimated
!CH3CHOH+OH=CH3CHO+H2O    		1.00E+13     	0.00        0.  ! estimated
!CH3CHOH+HO2=CH3CHO+H2O2 		5.00E+12     	0.00        0.  ! estimated

!CH2CHOH+H=CH2CH2OH        		6.02E+36    	-8.14     8043.
!PLOG /0.01      5.90E+40      -10.43      4832./
!PLOG /0.025     6.02E+36       -9.76      1995./
!PLOG /0.1 		6.02E+36       -9.65      2362./
!PLOG /1 		6.02E+36       -8.14      8043./
!PLOG /10 		6.02E+36       -7.77     10735./
!PLOG /100       6.02E+36       -7.44     14269./
!make it 10% of C2H4+OH channel. MC calculations showed it! 
CH2CH2OH+O=CH2O+CH2OH			8.00E+13	0.00	 0.00
H+CH2CH2OH=CH3+CH2OH			9.00E+13	0.00	 0.00
H+CH2CH2OH=C2H4+H2O				3.00E+13	0.00	 0.00
CH2CH2OH+OH=H2O+CH2CHOH			3.00E+13	0.00	 0.00
CH2CH2OH+O2=CH2CHOH+HO2     	1.00E+12     0.00    -1100.  ! Judit Zador et al., Proc Combust Inst 32(2009)271-277

!CH3OCH2(+M)=CH3+CH2O(+M)		4.87E+12     	0.39     26909.7  
!	LOW				/1.51E+26   -3.01   23785.4/
!	TROE 				/-4.168 465.72 379.87 4303.4/      
! H2/3.0/ H2O/9.0/ CO/2.25/ CO2/4.5/ AR/1.0/ C2H2/4.0/ O2/1.5/ N2/1.5/ CH3OCH3/6.0/ HE/1.2/
! my calculation
!CH3+CH2O=CH3CHO+H			3.00E+13	0.00	11400. ! Estimate
!CH3OCH2+H=CH3+CH3O			1.20E+14     	0.00      0.00  ! estimate
!CH3OCH2+H=CH4+CH2O			1.20E+14     	0.00      0.00  ! estimate
!CH3OCH2+OH=CH2OH+CH3O			3.00E+13     	0.00      0.00  ! estimate
!CH3OCH2+HO2=H2O+CH2O+CH2O		1.00E+13	0.00	  0.00
!CH3OCH2+O=CH3OCHO+H			1.88E+15    	-0.47    -60.0   ! WANG BAOSHAN Phys. Chem. Chem. Phys., 2005, 7, 3980?988
! THERE IS A DIRECT ABSTRACTION CHANNEL AT HIGHER TEMP. NEGLECTED HERE SINCE CH3OCH2 WILL NOT EXSIT AT HIGH T  
! Proceedings of the Combustion Institute, Volume 31, Issue 1, January 2007, Pages 295?03
!CH3OCH2+O2=CH2O+CH2O+OH			9.33E+10     	0.00    -1127.   
!there is a new paper by Pilling in 2010 showing OH channel at higher pressure is small
! indicating the TS are comparable with reactant
! so the PES in the reference may not be right.  
!CH3OCH2+O2=HCO+CH2O+H2O			6.67E+10     	0.00       773.  

!*********************************************************************************
!																				 !
!              				C2H6 mechanism-HPMECH					   			 !
!																				 !
!*********************************************************************************

! GRI-Mech 3.0 http://www.me.berkeley.edu/gri_mech/
C2H5+H(+M)<=>C2H6(+M)        5.210E+17    -0.990      1580.0
                       LOW / 1.990E+41    -7.080      6685.0 / 
TROE / 0.8422  125.0  2219.0  6882.0 / 
AR/0.7/ H2/2.0/ H2O/6.0/ CH4/2.0/ CO/1.5/ CO2/2.0/ C2H6/3.0/ CH3OH/3.0/ 

! Bryukov et al., Journal of Physical Chemistry A (2001) Vol. 105, pp. 6900-6909
C2H6+H<=>C2H5+H2             2.680E+07     1.980      6325.2

! Huynh et al., Combustion and Flame (2008) Vol. 152, pp. 177-185
C2H6+O<=>C2H5+OH             3.168E+01     3.800      3131.8

! Krasnoperov And Michael, Journal of Physical Chemistry A (2004) Vol. 108, pp. 5643-5648
C2H6+OH<=>C2H5+H2O           1.614E+06     2.224       741.2

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
C2H6+O2<=>C2H5+HO2           4.040E+13     0.000     50875.0

! Carstensen and Dean, Proceeding of the Combustion Institute (2005) Vol. 30, pp. 995-1003
C2H6+HO2<=>C2H5+H2O2         2.610E+01     3.370     15900.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
C2H6+HCO<=>CH2O+C2H5         4.700E+04     2.720    18235.0

! Activation energy: Berman and Lin, Chemical Physics (1983), Vol. 82, pp. 435-42
! Preexponentil factor: Galland et al., Journal of Physical Chemistry A (2003) Vol. 107, pp. 5419-5426
C2H6+CH<=>C2H4+CH3           6.185E+13     0.000      -262.3

! Davidson et al., Int. J. Chem. Kinet. 1995, 27 (12), 1179-1196.
CH2(S)+C2H6<=>CH3+C2H5       4.000E+13     0.000      -550.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
C2H6+CH3<=>C2H5+CH4          5.506E-01     4.000      8287.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
C2H6+CH2OH<=>CH3OH+C2H5      1.990E+02     3.000    13976.0

! Ceursters, et al Phys. Chem. Chem. Phys., 2001, 3, 3070-3074  
C2H6+C2H<=>C2H2+C2H5         7.200E+11     0.540     -358.0

! Tsang and Hampson, Journal of Physical Chemical Reference Data (1986) Vol. 15, pp. 1087
C2H6+C2H3<=>C2H4+C2H5        6.010E+02     3.300    10502.0

!*********************************************************************************
!																				 !
!              	C2H6O mechanism-HPMECH							     			 !
!																				 !
!*********************************************************************************

! Sivaramakrishnan ET AL.,J. Phys. Chem. A 2010, 114, 9425?9439
!C2H5OH=C2H4+H2O                        3.41E+59 -14.22     83672.  
!PLOG /0.01      2.62E+57 -13.29     85262./
!PLOG /0.10      1.65E+52 -11.52     84745./
!PLOG /1.00      5.23E+43  -8.90     81507./
!PLOG /10.0      4.59E+32  -5.60     76062./
!PLOG /10.0      3.84E+20  -2.06     69466./

!C2H5OH=CH3+CH2OH                       1.20E+54 -12.94    100006.  
!PLOG /0.01       5.18E+59 -13.98     99906./
!PLOG /0.10      1.62E+66 -15.30    105390./
!PLOG /1.00      5.55E+64 -14.47    107099./
!PLOG /10.0      1.55E+58 -12.29    105768./
!PLOG /10.0      1.78E+47  -8.96    101058./

!C2H5OH=C2H5+OH                         8.10E+46 -11.33    111053.  
!PLOG /0.01      1.82E+56 -13.49    107028./
!PLOG /0.10      4.65E+63 -14.99    109623./
!PLOG /1.00      1.46E+65 -14.89    112344./
!PLOG /10.0      2.79E+61 -13.40    113080./
!PLOG /10.0      6.17E+51 -10.34    109040./
!C2H5OH+H=CH3CHOH+H2                    8.80e+04     2.68     2914.  
!C2H5OH+H=CH2CH2OH+H2                    5.30e+04     2.81     7442.  
!C2H5OH+H=CH3CH2O+H2                    9.42e+02     3.14     9407.  
!C2H5OH+OH=CH3CHOH+H2O				   7.20E+05     2.54    -1534.  
!C2H5OH+OH=CH2CH2OH+H2O				   5.70E+00     3.38    -2394.  
!C2H5OH+OH=CH3CH2O+H2O				   5.80E-03     4.28    -3561.  

! Wu et al. J. Phys. Chem. A 2007, 111, 6693-6703
!C2H5OH+O=CH3CHOH+OH                    1.44E+05     2.47      876.  
!C2H5OH+O=CH2CH2OH+OH                   9.60E+02     3.23     4657.  
!C2H5OH+O=CH3CH2O+OH                    1.44E-03     4.73     1727.  
!! could also produce H+CH2CHCH2OH
!!! Xu et al., J. Chem. Phys.120(2004) 6593
!C2H5OH+CH3=CH3CHOH+CH4                 1.98E+01     3.37     7634.  
!C2H5OH+CH3=CH2CH2OH+CH4                2.03E+00     3.57     7721.  
!C2H5OH+CH3=CH3CH2O+CH4                 3.30E+02     3.30    12290. 
 ! Raghu Sivaramakrishnan et al., Combustion and Flame 158 (2011) 618-632
!CH3OCH3(+M)=CH3O+CH3(+M)               	2.33E+19    	-0.66    84139.  
!    Low                                /1.72E+59   	-11.40    93295.6/
!    Troe   /1.0   1.0E-30   880./
!    H2/3.0/ H2O/9.0/ CH4/3.0/ CO/2.25/ CO2/3.0/ C2H6/4.5/ AR/1.0/ N2/1.50/ CH3OCH3/5.0/ HE/1.20/

!CH3OCH3+H=H2+CH3OCH2                  	3.94E+00      	4.13     1780. 
! make it 30% smaller
!CH3OCH3+H=H2+CH3OCH2                  	3.00E+00      	4.13     1780. 
! K. TAKAHASHI, O. YAMAMOTO, T. INOMATA, M. KOGOMA  Int J Chem Kinet 39: 97?08, 2007
!CH3OCH3+O=CH3OCH2+OH			2.69E+07      	2.00     2629. 
! Cook et al., J. Phys. Chem. A 2009, 113, 9974
!CH3OCH3+OH=H2O+CH3OCH2                	6.32E+06      	2.00     -652. 
!CH3OCH3+HO2=CH3OCH2+H2O2                1.02E+02      	3.48    17424.
! estimate from J. Phys. Chem. A 2008, 112, 7047?054
!CH3OCH3+O2=CH3OCH2+HO2                  4.10E+13      	0.00  4.491E+04
! Tranter Patrick and Yang 
!CH3OCH3+CH3=CH4+CH3OCH2   		6.22E+00      	3.78     9631. 
! 30% uncertainty from 10 to 6.22
!*********************************************************************************
!																				 !
!              	C3H2 mechanism-HPMECH							     			 !
!																				 !
!*********************************************************************************
!!HC=C=CH is in triplet state, and the most stable isomer is cyclic(singlet), the difference is about 10 kcal/mol
!! now the question is how it is generated in combustion environments, 
!!for CH+C2H2, the main product channel is triplet HC=C=CH, but for C3H3+O, the main products channel is very complicated
!! thermo is also a huge problem for C3H2 in Burcat's thermo!!
C3H2+O=C2H2+CO                         6.02E+13     0.00        0.  ! Warnatz J. Ber. Bunsenges. Phys. Chem. 87 (1983) 1008.
!! looks alright, C3H2 is a resonant stablized radical. the association should be very fast
!! The product is no doubt C2H2+CO. The TS to it is around 70 kcal/mol 
!! the simple bond-fission barrier is just too high
C3H2+OH=C2H2+HCO                       6.80E+13    0.00        0.  ! Warnatz J. Ber. Bunsenges. Phys. Chem. 87 (1983) 1008.
!!The products may be alittle tricky. the first etep is HCCCHOH, then decompose??

C3H2+H(+M)=C3H3(+M)        3.41E+14    0.00   291.95
LOW/2.47E+31   -3.92  4411.25/
Troe/0.419  3165.06   177.35   204926.14/
H2/3.0/ H2O/9.0/ CO/2.30/ CO2/4.0/ AR/1.0/ CH4/3.0/ C2H6/4.0/ N2/1.50/ HE/1.0/ CH3OH/6.0/ O2/1.5/

C3H2+O2=HCO+HCCO                       1.00E+13     0.00     1000.  ! Miller, J.A. et al Prog. Energy Combust. Sci., 1989, v. 15, pp. 287-338.

C3H2+CH=C4H2+H                         1.00E+14     0.00        0.  ! estimated!
!! THIS REACTION IS VERY FAST.  
C3H2+CH2=iC4H3+H                       5.00E+13     0.00        0.  ! Wang H., and Frenklach M. Combust. Flame 110 (1997) 173
C3H2+CH2(S)=iC4H3+H                    5.00E+13     0.00        0.  ! estimated
!! ADDITION-ELIMINATION iC4H3 is more stable 
C3H2+CH3=C4H4+H                        1.00E+13     0.00        0.  ! estimated
!! assuming no entrance barrier 
!C3H2+C2H=C5H2+H                        1.00E+14     0.00        0.  ! estimated
C3H2+HCCO=nC4H3+CO                     1.00E+13     0.00        0.  ! Wang H., and Frenklach M. Combust. Flame 110 (1997) 173
!C3H2+C2H2=HCCCHCCH+H                   5.00E+12     0.00     5000.  ! estimated
!! I have no idea about this reaction. Jim Miller's est.
!! similar to Ch2 system
C3H2SING+M=C3H2+M		       			1.00E+13	    0.00   0.00
H2/3.0/ H2O/9.0/ CH4/3.0/ CO/2.25/ CO2/3.0/ C2H6/4.5/ AR/1.0/ N2/1.50/ HE/1.20/
c-C3H2+O=C2H+HCO                       1.00E+13     0.00    12000.  ! estimated
!! complete C3H2 chemistry
!*********************************************************************************
!																				 !
!              	C3H3 mechanism-HPMECH							     			 !
!																				 !
!*********************************************************************************

C3H3+O=CH2O+C2H                      1.20E+14     0.00        0.  ! Slagle et al., Symp. Int. Combust. Proc. 23:115(1991) 

C3H3+H=C3H2+H2   2.14E5    2.52    7453.    ! abstraction
C3H3+H=C3H2SING+H2              2.9512E+09    1.28     13474.  !bpick jul03
 PLOG  /0.03947   2.9512E+09    1.28     13474./
 PLOG  /1.        1.0965E+10   1.13     13929./
 PLOG  /10.       3.3113E+13   0.195    17579./
!C3H3+H=H2CCC+H2             2.6915E+09   1.05     5371.  !bpick jul03
! PLOG  /0.03947   2.6915E+09   1.05     5371./
! PLOG  /1.        2.8840E+13   -.03     9448./
! PLOG  /10.       1.0000E+18   -1.23    15111./
C3H3+H=c-C3H2+H2                1.0715E+07   1.37     15557.  !bpick jul03
 PLOG  /0.03947   1.0715E+07   1.37     15557./
 PLOG  /1.        1.3490E+07   1.34     15560./
 PLOG  /10.       7.2444E+09   0.606    18356./
aC3H4=pC3H4                       6.0256E+53   -12.18   84276.  !bpick jul03
 PLOG  /0.03947   6.0256E+53   -12.18   84276./
 PLOG  /1.        7.7625E+39   -7.80    78446./
 PLOG  /10.       4.7863E+48   -10.0    88685./
c-C3H4=pC3H4                      2.5119E+50   -11.82   50914.  !bpick jul03
 PLOG  /0.03947   2.5119E+50   -11.82   50914./
 PLOG  /1.        1.2303E+37   -7.51    45551./
 PLOG  /10.       1.6596E+37   -7.24    48013./
c-C3H4=aC3H4                       9.7724E+43   -9.97    56007.  !bpick jul03
 PLOG  /0.03947   9.7724E+43   -9.97    56007./
 PLOG  /1.        2.5119E+26   -4.56    43922./
 PLOG  /10.       5.0119E+35   -6.87    51298./
C3H3+H=pC3H4                   3.6308E+36   -7.36    6039.  !bpick jul03
 PLOG  /0.03947   3.6308E+36   -7.36    6039./
 PLOG  /1.        7.943E+29    -5.06    4861./
 PLOG  /10.       1.072E24     -3.15    3261./
C3H3+H=aC3H4                    3.3884E+36   -7.41    6337.  !bpick jul03
 PLOG  /0.03947   3.3884E+36   -7.41    6337./
 PLOG  /1.        3.1623E+29   -5.      4711./
 PLOG  /10.       8.7096E+23   -3.20    3255./
C3H3+H=c-C3H4                   8.9125E+112  -28.26   83611.  !bpick jul03
 PLOG  /0.03947   8.9125E+112  -28.26   83611./
 PLOG  /1.        1.0715E+21   -2.95    2687./
 PLOG  /10.       3.2359E+18   -2.05    2053./

C3H3+OH=C3H2+H2O                       2.00E+13     0.00     8000.  ! JAM 2007  
C3H3+OH=CH2O+C2H2                      2.00E+12     0.00        0.  ! JAM 2007
C3H3+OH=C2H3+HCO                       5.00E+13     0.00        0.  ! JAM 2007
C3H3+OH=C2H4+CO                        3.00E+13     0.00        0.  ! JAM 2007
!! The reaction mechanism should be complicated, not a single abtraction     
!! use Jim Miller's rate for now. will consider these later Sep 27 2011
C3H3+O2=CH2CO+HCO                      1.70E+05     1.70     1500.  ! Hahn et al, Faraday Discuss., 119:79-100(2001)
C3H3+HCO=aC3H4+CO                      1.50E+13     0.00        0.  ! USC-Mech II
C3H3+HCO=pC3H4+CO                      1.50E+13     0.00        0.  ! USC-Mech II
C3H3+CH=iC4H3+H                        5.00E+13     0.00        0.  ! USC-Mech II
C3H3+CH2=C4H4+H                        5.00E+13     0.00        0.  ! USC-Mech II
!! these two are reasonable,maybe even faster
!! In Miller's mechanism C3H3+CH3 produces iC4H5+H. But it is very unlikely at low temp. for heat of reaction calculation
!! CH3 35.1 C3H3~79, C4H5~75 H 52.0 so the reaction is very endothermic 
!C3H3+CH3(+M)=C4H6-12(+M)               1.50E+12     0.00       0.  ! USC-Mech II
!  LOW                                /2.60E+57    -11.94   9770./
!  TROE /0.175 1341 60000 9770/                    
!  H2/2.0/ H2O/6.0/ CH4/2.0/ CO/1.5/ CO2/2.0/ C2H6/3.0/ AR/0.7/   
C3H3+HCCO=C4H4+CO                      2.50E+13     0.00        0.  ! USC-Mech II
!C3H3+C2H=HCCCHCCH+H                    3.00E+13     0.00        0.  !JAM&SJK
!C3H3+C2H=H2CCCCCH+H                    1.00E+13     0.00        0.  !JAM&SJK
!! the rates should be even higher

!C3H3+C2H2=C5H5                         6.17E+55   -15.70    47755.  ! MOSKALEVA et al., J. Comput. Chem. 21:415 (2000)
!PLOG/0.13	6.17E+66   -15.70    47755./
!PLOG/1.00	6.87E+55   -12.50    42021./
!PLOG/10.00	1.13E+43   -8.80     42021./

C3H3+C3H3=C4H5C2H           1.3177E+77   -19.00   33332.  !bpick jul03
 PLOG  /0.03947   1.3177E+77   -19.00   33332./
 PLOG  /1.        4.8957E+60   -14.02   25733./
 PLOG  /10.       1.4785E+55   -12.30   23622./
C3H3+C3H3=FC6H6           6.3069E+76   -19.07   31542.  !bpick jul03
 PLOG  /0.03947   6.3069E+76   -19.07   31542./
 PLOG  /1.        1.3798E+66   -15.66   28260./
 PLOG  /10.       1.2584E+56   -12.61   23515./
C3H3+C3H3=C6H6              1.8189E+74   -18.14   31896.  !bpick jul03
 PLOG  /0.03947   1.8189E+74   -18.14   31896./
 PLOG  /1.        3.1609E+55   -12.55   22264./
 PLOG  /10.       3.8888E+50   -11.01   20320./
C3H3+C3H3=C6H5+H            1.0467E+54   -11.88   28757.  !bpick jul03
 PLOG  /0.03947   1.0467E+54   -11.88   28757./
 PLOG  /1.        1.6975E+48   -9.977   36755./
 PLOG  /10.       3.6712E+26   -3.879   28963./
C4H5C2H=FC6H6                 5.7544E+76   -18.67   95531.  !bpick jul03
 PLOG  /0.03947   5.7544E+76   -18.67   95531./
 PLOG  /1.        2.3442E+56   -12.55   86405./
 PLOG  /10.       4.8978E+26   -4.144   65424./
C4H5C2H=C6H6                    6.7608E+98   -24.58   122310.  !bpick jul03
 PLOG  /0.03947   6.7608E+98   -24.58   122310./
 PLOG  /1.        1.6218E+53   -11.34   100210./
 PLOG  /10.       2.8184E+51   -10.68   106950./
C4H5C2H=C6H5+H                  2.6915E+84   -20.14   121900.  !bpick jul03
 PLOG  /0.03947   2.6915E+84   -20.14   121900./
 PLOG  /1.        4.1687E+77   -17.68   133520./
 PLOG  /10.       3.0903E+43   -7.928   118650./
FC6H6=C6H6                    5.6234E+81   -19.36   121500.  !bpick jul03
 PLOG  /0.03947   5.6234E+81   -19.36   121500./
 PLOG  /1.        1.4454E+45   -8.900   96999./
 PLOG  /10.       2.9512E+31   -4.970   88465./
FC6H6=C6H5+H                  2.5704E+97   -23.16   153470.  !bpick jul03
 PLOG  /0.03947   2.5704E+97   -23.16   153470./
 PLOG  /1.        2.2387E+68   -14.65   142570./
 PLOG  /10.       8.5114E+24   -2.505   113330./
C6H6=C6H5+H                     1.3490E+108  -25.81   181750.  !bpick jul03
 PLOG  /0.03947   1.3490E+108  -25.81   181750./
 PLOG  /1.        6.3096E+60   -12.40   148070./
 PLOG  /10.       5.4954E+38   -6.178   132000./
!! C3H3 self reactions are from Jim Miller's mechanism. Should be the most reliable source for now.
!! the collision efficiency of different partners can't simply apply for this system.

!*********************************************************************************
!																				 !
!              	C3H4 mechanism-HPMECH							     			 !
!																				 !
!*********************************************************************************

pC3H4+H=sC3H5     1.0E+25   -5.00   1800.  !bpick jul03
 PLOG  /0.1     1.0E+25   -5.00   1800./
 PLOG  /1.      5.5E+28   -5.74   4300./
 PLOG  /10.     1.0E+34   -6.88   8900./
 PLOG  /100.    9.7E+37   -7.63   13800./
 PLOG  /1.0E+5  3.2E+09   1.43    4700./
pC3H4+H=aC3H4+H      2.3E+15   -0.26   7600.  !bpick jul03
 PLOG  /0.1     2.3E+15   -0.26   7600./
 PLOG  /1.      6.3E+17   -0.91   10100./
 PLOG  /10.     3.1E+22   -2.18   14800./
 PLOG  /100.    6.4E+27   -3.58   21200./
pC3H4+H=tC3H5     4.6E+44   -10.21  10200.  !bpick jul03
 PLOG  /0.1     4.6E+44   -10.21  10200./
 PLOG  /1.      1.7E+47   -10.58  13700./
 PLOG  /10.     7.0E+47   -10.40  16600./
 PLOG  /100.    3.2E+44   -9.11   17400./
 PLOG  /1.0E+5  1.7E+11   0.97    2800./
pC3H4+H=aC3H5    1.1E+60   -14.56  28100.  !bpick jul03
 PLOG  /0.1     1.1E+60   -14.56  28100./
 PLOG  /1.      4.9E+60   -14.37  31600./
 PLOG  /10.     2.2E+59   -13.61  34900./
 PLOG  /100.    1.6E+55   -12.07  37500./
aC3H4+H=sC3H5      1.1E+30   -6.52   15200.  !bpick jul03
 PLOG  /0.1     1.1E+30   -6.52   15200./
 PLOG  /1.      5.4E+29   -6.09   16300./
 PLOG  /10.     2.6E+31   -6.23   18700./
 PLOG  /100.    3.2E+31   -5.88   21500./
aC3H4+H=tC3H5      9.2E+38   -8.65   7000.  !bpick jul03
 PLOG  /0.1     9.2E+38   -8.65   7000./
 PLOG  /1.      9.5E+42   -9.43   11200./
 PLOG  /10.     1.5E+45   -9.69   15100./
 PLOG  /100.    1.8E+43   -8.78   16800./
 PLOG  /1.0E+5  4.4E+09   1.45    2400./
aC3H4+H=aC3H5     9.6E+61   -14.67  26000.  !bpick jul03
 PLOG  /0.1     9.6E+61   -14.67  26000./
 PLOG  /1.      1.5E+59   -13.54  26900./
 PLOG  /10.     2.4E+52   -11.30  25400./
 PLOG  /100.    6.9E+41   -8.06   21300./
 PLOG  /1.0E+5  4.6E+09   1.44    4800./
aC3H5=sC3H5    1.3E+55   -14.53  73800.  !bpick jul03
 PLOG  /0.1     1.3E+55   -14.53  73800./
 PLOG  /1.      5.0E+51   -13.02  73300./
 PLOG  /10.     9.7E+48   -11.73  73700./
 PLOG  /100.    1.1E+44   -9.84   73400./
aC3H5=tC3H5    3.9E+59   -15.42  75400.  !bpick jul03
 PLOG  /0.1     3.9E+59   -15.42  75400./
 PLOG  /1.      7.1E+56   -14.08  75900./
 PLOG  /10.     6.4E+51   -12.12  75700./
 PLOG  /100.    2.8E+43   -9.27   74000./
tC3H5=sC3H5     1.6E+44   -12.16  52200.  !bpick jul03
 PLOG  /0.1     1.6E+44   -12.16  52200./
 PLOG  /1.      1.5E+48   -12.71  53900./
 PLOG  /10.     5.1E+52   -13.37  57200./
 PLOG  /100.    5.8E+51   -12.43  59200./

aC3H4+O=C2H4+CO                            2.00E+07    1.8     1000.0    !98DAV/LAW
aC3H4+H=C3H3+H2                              6.604E+03  3.095     5522. !JAM, SJK et al (2007)
aC3H4+OH=C3H3+H2O                    2.00E+07    2.0       5000.  !JAM
aC3H4+OH=CH2O+C2H3                  1.00E+12    0.0      -198.7  ! JAM/Liu(1988)/Butler(07)
aC3H4+OH=CH2CO+CH3                  3.04E+12    0.0      -198.7  ! 
! Liu, A.; Mulac, W. A.; Jonah, C. D. J. Phys. Chem. 1988, 92,131-134.
aC3H4+CH3=C3H3+CH4                      1.30E+12   0.00     7700.0    !87WU/KER 
!aC3H4+CH3 = iC4H7                      2.00E+11   0.00     7500.0    ! PW P    
aC3H4+C2H=C2H2+C3H3                     1.00E+13    0.0        0.0    !97WAN/FRE
aC3H4+CH2=iC4H5+H                       2.00E+13   0.0      4000.  ! JAM&SJK
aC3H4+CH2(S)=iC4H5+H                    2.00E+13   0.0     0.0   ! JAM&SJK

 pC3H4+H=C3H3+H2                        3.57E+04   2.825     4821.   !JAM,SJK,et al 2007 
 pC3H4+O=HCCO+CH3                       7.30E+12     0.00     2250.  ! Adusei et al. J Phys Chem 100:16921(1996)
 pC3H4+O=C2H4+CO                        1.00E+13     0.00     2250.  ! Adusei et al. J Phys Chem 100:16921(1996)
 pC3H4+O=C3H3+OH                        3.44E+04     2.16     4830.  ! Adusei et al. J Phys Chem 100:16921(1996)
 pC3H4+OH=C3H3+H2O                      2.00E+07     2.00     5000.  ! JAM
 pC3H4+OH=HCCO+CH4                      5.00E+12     0.00     5000.  ! JAM
! pC3H4+OH=C2H4+HCO                      5.00E+12     0.00     5000.  ! JAM
 pC3H4+CH=C4H4+H                       1.20E+14     0.00        0.  ! ESTIMATED
!!Phys. Chem. Chem. Phys., 2009, 11, 655?664  iC4H4   CH2CHCCH
 pC3H4+CH2=iC4H5+H                      2.00E+13     0.00     4000.  ! JAM&SJK
 pC3H4+CH2(S)=iC4H5+H                     1.00E+14     0.00        0.  ! PRODUCTS ESTIMATED, SHOULD BE RIGHT
!! EXPERIMENTAL MEASUREMENT 
!!Berichte der Bunsengesellschaft für physikalische Chemie
!! Volume 94, Issue 6, pages 645?650, Juni 1990
 pC3H4+CH3=C3H3+CH4                     1.80E+12     0.00     7700.  ! USC-Mech II

!*********************************************************************************
!																				 !
!              	C3H5 mechanism-HPMECH							     			 !
!																				 !
!*********************************************************************************
! S-C3H5===CH3CHCH
! T-C3H5===CH3CCH2
! A-C3H5===CH2CHCH2

aC3H5+H(+M)=C3H6(+M)                   2.00E+14     0.00        0.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
  LOW                                 /1.33E+60   -12.00     5967.8/
  TROE /0.02 1097 10967 6860/                    
  H2/2.0/ H2O/6.0/ CH4/2.0/ CO/1.5/ CO2/2.0/ C2H6/3.0/ AR/0.7/  
!! high pressure limit was confirmed by Larry's calculation  
aC3H5+H=aC3H4+H2                       1.80E+13     0.00        0.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
!! H+C3H5 should be very fast, mainly forming CH3+C2H3, included in reverse reaction
aC3H5+O=C2H3CHO+H                      6.00E+13     0.00        0.  ! Slagle et al., J. Phys. Chem. 1990, 94. 3652-3656
aC3H5+O=>C2H4+H+CO                      6.00E+13     0.00        0.  ! Hoyermann et al Proc Combust Inst. 32 (2009) 157?164
aC3H5+OH=>C2H3CHO+H+H                       5.30E+37  -6.71    29306.0    !91TSA RRKM 0.1 atm
PLOG /    0.1     5.30E+37  -6.71    29306.0/
PLOG /    1.0     4.20E+32  -5.16    30126.0/
PLOG /    10.0    1.60E+20  -1.56    26330.0/
aC3H5+OH=aC3H4+H2O                     2.00E+13     0.00        0.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
! a bit slow, but still OK

aC3H5+O2=aC3H4+HO2                     2.06E+04	    2.19    17590.  ! Lee et al., Proc Combust Inst 30:1015(2005) 
aC3H5+O2=>C2H2+CH2O+OH                  9.71E+20	   -2.70    24980.  ! Lee et al., Proc Combust Inst 30:1015(2005) 
aC3H5+O2=CH2O+CH2CHO                   3.08E+09	    0.37    16910.  ! Lee et al., Proc Combust Inst 30:1015(2005) 
aC3H5+O2=C2H3CHO+OH                    3.36E+05	    1.81    19190.  ! Lee et al., Proc Combust Inst 30:1015(2005) 
aC3H5+HO2=>C2H3CHO+OH+H                 1.00E+13     0.00        0.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
!! makes more sense
!aC3H5+CH2=C4H6-13+H                    3.00E+13     0.00        0.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
!aC3H5+CH2(S)=C4H6-13+H                 1.00E+14    -0.00        0.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
aC3H5+CH3=aC3H4+CH4                    3.00E+12    -0.32     -131.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)


aC3H5+HCO=C3H6+CO                      6.00E+13     0.00        0.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
aC3H5+C2H=C2H3+C3H3                    4.00E+13     0.00        0.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
!! OTHER CHANNELS ARE NEGLIGIBLE 
!aC3H5+C2H2=C5H6+H                      4.00E+14     0.00    24889.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
aC3H5+C2H3=aC3H4+C2H4                  2.40E+12     0.00        0.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
aC3H5+C2H3=C3H6+C2H2                   4.80E+12     0.00        0.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
aC3H5+C3H2=C6H6+H                   2.00E+13     0.00        0.0 ! JAM&SJK 2004
aC3H5+C3H3=>FC6H6+H+H                 3.26E+29    -5.10     3390.  ! JAM, YG, et al 2007 PCCP paper
aC3H5+aC3H5=aC3H4+C3H6                 8.43E+10     0.00     -262.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
sC3H5+H=aC3H4+H2                       3.00E+13     0.00        0.  ! estimated 
sC3H5+H=pC3H4+H2                       3.00E+13     0.00        0.  ! estimated 
!!CH bond are weak, similar to C2H3
sC3H5+H=aC3H5+H                        1.00E+13     0.00        0.  ! estimated
sC3H5+O=CH2CO+CH3                      0.75E+14     0.00        0.  ! estimated
sC3H5+O=C2H5+CO                        0.75E+14     0.00        0.  ! estimated
sC3H5+OH=pC3H4+H2O                    1.00E+13     0.00        0.  ! estimated
sC3H5+OH=aC3H4+H2O                    1.00E+13     0.00        0.  ! estimated
sC3H5+OH=CH2CO+CH3+H                   0.50E+13     0.00        0.  ! estimated
!! addition-elimination 
sC3H5+O2=CH3CO+CH2O                    4.34E+12     0.00        0.  ! Davis et al., J. Phys. Chem. A 103:5889(1999)
sC3H5+CH3=aC3H4+CH4                    1.00E+11     0.00        0.  ! Davis et al., J. Phys. Chem. A 103:5889(1999)
sC3H5+CH3=pC3H4+CH4                    1.00E+11     0.00        0.  ! Davis et al., J. Phys. Chem. A 103:5889(1999)
!! for H atom reaction abstraction is usually fast than addition-elimination with shallow well
!! remain question
!*********************************************************************************
!																				 !
!              			C3H3O mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************

C2H3+CO=C2H3CO               			  1.51E+11     0.00     4808.8  
C2H3+HCO=C2H3CO+H                         1.00E+13     0.00        0.  ! Estimated
!
C2H3CO+H=C2H4+CO                          1.00E+14     0.00        0.  ! Estimated
!*********************************************************************************
!																				 !
!              			C3H4O mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************
C2H3CHO=C2H4+CO                        2.00E+12     0.00    56300.  ! estimated
! same as C3H2O, may not be very good, but no other sources can be referenced                       
C2H3CHO+H=C2H4+HCO                     1.08E+11     0.45     5820.   
C2H3CHO+H=C2H3CO+H2                    3.98E+13     0.00     4200.   
C2H3CHO+O=C2H3+OH+CO                   3.00E+13     0.00     3540.   
C2H3CHO+O=CH2O+CH2CO                   1.90E+07     1.80      220.   
C2H3CHO+OH=C2H3+H2O+CO                 3.43E+09     1.18     -447. 
C2H3CHO+CH3=C2H3CO+CH4                 2.00E+13     0.00    11000.   
!C2H3CHO+C2H3=C4H6-13+HCO                  2.80E+21    -2.44    14720.   
!! from USC-Mech II, looks reasonable 
!*********************************************************************************
!																				 !
!              			C3H6 mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************
!C3H6=H2+aC3H4                          4.00E+13     0.00    80000.  ! Hidaka Int. J. Chem. Kinet. 24:761(1992)
!C3H6=CH4+C2H2                          3.50E+12     0.00    70000.  ! Hidaka Int. J. Chem. Kinet. 24:761(1992)
!! These two channels are not important. Could be safely deleted   
C3H6+O=C2H5+HCO                        0.97E+07     1.83     -546.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
C3H6+O=CH3+CH2CHO                      0.77E+07     1.83     -546.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
C3H6+O=C2H3CHO+H+H                     1.31E+07     1.83     -546.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991) 
C3H6+O=C2H4+CH2O                       0.43E+07     1.83     -546.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
C3H6+O=aC3H5+OH                        1.75E+11     0.70     5884.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
C3H6+O=sC3H5+OH                        1.21E+11     0.70     8960.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
C3H6+O=tC3H5+OH                        6.03E+10     0.70     7633.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
! C3H6+O chemistry is not right in these rates
!! Let's take the abstrac rates and rearrange the addition-elimination rates
!! The first step on triplrt surface CH3CHCH2O is H- atom release or H2CO+CH3CH via bond fission
!! on singlet sruface, it must go through the intersystem crossing first 
!! CH3CHCH2O will isomerized to CH3CH2CHO then forming C2H5+HCO and CH3+CH2HCO, C2H4+H2CO is also a product channel in low temp
!! on Triplet surface, the branching ratio is 75:25
!! on singlet it is about 56:44:0 when temp >1000 K, at room temp C2H4+H2CO is dominant
!! aussming isc is about 50:50(which is normal), then branching ratio of H+H+C2H3CHO: H2CO+C2H4: C2H5+HCO: Ch3+CH2CHO is 75:25:56:44
!! k=3.48E+7*T^1.83*exp(275/T) from Wing Tsang
C3H6+OH=aC3H5+H2O                     -1.21E+08     1.73      925. ! Zador et al. PCCP 11(2009) 11010-11053
   DUPLICATE
C3H6+OH=aC3H5+H2O                 	   1.88E+07     2.03      684. ! Zador et al. PCCP 11(2009) 11010-11053
   DUPLICATE
!!C3H6+OH=aC3H5+H2O                 	   8.31E+04     2.60      323. ! Zador et al. PCCP 11(2009) 11010-11053
C3H6+OH=sC3H5+H2O                      7.80E+03     2.80     2193. ! Zador et al. PCCP 11(2009) 11010-11053
   DUPLICATE
C3H6+OH=sC3H5+H2O                 	   1.02E+00     3.51     -101. ! Zador et al. PCCP 11(2009) 11010-11053
   DUPLICATE
C3H6+OH=tC3H5+H2O                      4.67E+04     2.47     1748. ! Zador et al. PCCP 11(2009) 11010-11053
   DUPLICATE
C3H6+OH=tC3H5+H2O                 	   5.70E-07     2.61    -3086. ! Zador et al. PCCP 11(2009) 11010-11053
   DUPLICATE

!! Other channel are not important at low pressure flame conditions
!C3H6+O2=aC3H5+HO2                      6.03E+13     0.00    47590.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
!C3H6+HO2=aC3H5+H2O2                    9.63E+03     2.60    13910.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
!C3H6+CH=C4H6-13+H                         1.20E+14     0.00        0.  ! ESTIMATED   
!! Phys. Chem. Chem. Phys., 2009, 11, 655?664  C4H6   CH2CHCHCH2
!C3H6+CH2*=C4H7+H                      1.00E+14     0.00        0.  !  Hack W. et al., 
C3H6+CH2=aC3H5+CH3                     2.00E+13     0.00        0.
!!Berichte der Bunsengesellschaft für physikalische Chemie
!!Volume 93, Issue 2, pages 165?170, Februar 1989
C3H6+CH3=aC3H5+CH4                     2.20E+00     3.50     5675.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
C3H6+CH3=sC3H5+CH4                     8.40E-01     3.50    11660.  ! Tsang W, J. Phys. Chem. Ref. Data 20:221(1991)
C3H6+C2H=C2H2+aC3H5                    0.50E+14     0.00      140.  ! half of C2H+C2H6 rate
C3H6+C2H=CH3+C4H4                      0.70E+14     0.00     -140.  ! estimated
!*********************************************************************************
!																				 !
!              			C3H7 mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************
C3H6+H=CH3+C2H4			 				7.88e+10   		0.8700  	3599.6
 PLOG  /0.04    7.88e+10   0.8700  3599.6/
 PLOG  /1.      2.67E+12   0.4736  5431.1/
 PLOG  /10.     9.25E+22   -2.5495  12898./
 PLOG  /10.     1.57E+05   2.5154  3679.1/
 PLOG  /100.    1.32E+23  -2.4248  16500./
 PLOG  /100.    2.51E+03   2.9088  3098.9/
!!Pressure dependence is very weak
C3H6+H=aC3H5+H2							-8.85E+08		1.307		3411.6
	dup 
C3H6+H=aC3H5+H2							5.48E+05		2.396		2613.4
	dup

C3H6+H=tC3H5+H2							1.49E+02		3.381		8909.5

C3H6+H=sC3H5+H2							3.97E+02		3.252		12007.
	dup
C3H6+H=sC3H5+H2							5.10E+02		3.234		12357.
	dup
!*********************************************************************************
!																				 !
!              			C4H mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************
C4H+O=C2O+C2H                          	6.00E+13     0.00        0.0 ! estimated
C4H+O2=HCCO+C2O                        	5.00E+13     0.00     1500.0 ! estimated
C4H+H2=H+C4H2                          	2.10E+06     2.32      882.  ! estimated 
!!all from C2H chemistry, should be reasonable
!*********************************************************************************
!																				 !
!              			C4H2 mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************
C4H2+OH=H2O+C4H                        	9.15E+09     1.03    21746.  ! Senosiain J. P., Klippenstein S. J., Miller J. A. Proc. Combust. Inst. 31 (2007) 185-192.        
C4H2+OH=CO+C3H3		       				1.69E+28    -4.59   20140.   ! Proc Comb Inst 31 185-193 (2007)       
 PLOG /0.01     2.58E+19    -2.44    3034./
 PLOG /0.025    1.69E+28    -4.59   20140./
 PLOG /0.1      7.65E+20    -2.83    4638./
 PLOG /1.       2.11E+23    -3.47    7590./
 PLOG /10.      1.63E+26    -4.18   13082./
 PLOG /100.     5.20E+31    -5.36   31879./
C4H2+OH=H+H2C4O                        	5.52E+19    -2.35     7229.  ! Senosiain J. P., Klippenstein S. J., Miller J. A. Proc. Combust. Inst. 31 (2007) 185-192.         
 PLOG /0.01     1.63E+15    -1.13    2549./
 PLOG /0.025    5.52E+19    -2.35    7229./
 PLOG /0.1      4.61E+23    -3.35   13059./
 PLOG /1.       8.19E+16    -1.59    4204./
 PLOG /10.      1.22E+22    -2.77   17186./
 PLOG /100.     3.10E+18    -1.61   22113./
C4H2+H=nC4H3                           4.17E+32    -6.49     9726.  ! Klippenstein S. J., Miller J. A. J. Phys. Chem. A 109 (2005) 4285-4295.
PLOG/0.013          1.44E+63   -15.66    24018./
PLOG/0.013          4.17E+32    -6.49     9726./
PLOG/0.118          1.91E+47	-13.616 	22832/
PLOG/0.118          1.61E+26 	-5.6133 	9389.7/
PLOG/1.000          7.30E+49 	-11.049 	21571 /
PLOG/1.000          3.47E+26	-4.3335 	8703.8 /
PLOG/10.00          1.91E+41 	-8.1799 	19790/
PLOG/10.00          1.05E+25 	-3.7911 	8465.8/
PLOG/10.00          6.00E+35 	-6.3292 	19322/
PLOG/10.00          5.52E+20 	-2.3188 	7603./
	 	
C4H2+H(+M)=iC4H3(+M)                   4.31E+10     1.16     1753.  ! Klippenstein S. J., Miller J. A. J. Phys. Chem. A 109 (2005) 4285-4295.
  LOW                                 /2.30E+45    -8.10     2507. /
  TROE /0.0748 1.0E-50 -4215.9 1.0E50/                                          
  H2/2.0/ CO/2.0/ CO2/3.0/ H2O/9.0/
C4H2+O=C3H2+CO                         2.70E+13     0.00     1720.  ! Warnatz J., in Combustion Chemistry, Gardiner, W. C. Jr. Springer-Verlag, New York (1984).
!C4H2+CH=C5H2+H                         1.00E+14     0.00        0.  ! estimate
!C4H2+CH2=H2CCCCCH+H                    1.30E+13     0.00     4326.  ! Bohland, T et al., Symp. Int. Combust. Proc. 21:841(1988)
!C4H2+CH2(S)=H2CCCCCH+H                 1.70E+15    -0.39        0.  ! Estimate from CH2sing+C2H2
C4H2+C2H=C6H2+H                        9.60E+13     0.00        0.  ! Wang H., and Frenklach M. Combust. Flame 110 (1997) 173.
C4H2+C2H=C6H3                          1.10E+30    -6.30     2790.0     !   20 Torr RRKM WAN/FRE
PLOG /    0.026     1.10E+30   -6.30   2790.0/
PLOG /    0.118     1.30E+30   -6.12   2510.0/
PLOG /    1.00      4.50E+37   -7.68   7100.0/
!*********************************************************************************
!																				 !
!              			C4H2O mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************
! CH2CCCO
!C4H2O+H=C2H2+HCCO                      5.00E+13     0.00     3000.  ! Miller, J.A.; Melius, C.F. Combust.Flame 1992, 91, 21.
!C4H2O+OH=CH2CO+HCCO                    1.00E+07     2.00     2000.  ! Miller, J.A.; Melius, C.F. Combust.Flame 1992, 91, 21.
!! to complete the mechanism

!*********************************************************************************
!																				 !
!              			C4H3 mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************

!iC4H3+O=C4H2O+H                        6.00E+13     0.00        0.  ! estimated
iC4H3+O=CH2CO+C2H                       6.00E+13     0.00        0.  ! estimated
!
!nC4H3 = iC4H3                                3.70E+61  -15.81  54890.0     !   20 Torr RRKM WAN/FRE
!nC4H3 = iC4H3                                1.00E+51  -12.45  51000.0     !   90 Torr RRKM WAN/FRE
 nC4H3 = iC4H3                                4.10E+43   -9.49  53000.0     !  760 Torr RRKM WAN/FRE
!
!nC4H3 + H = iC4H3 + H                        2.40E+11    0.79   2410.0     !   20 Torr RRKM WAN/FRE
!nC4H3 + H = iC4H3 + H                        9.20E+11    0.63   2990.0     !   90 Torr RRKM WAN/FRE
 nC4H3 + H = iC4H3 + H                        2.50E+20   -1.67  10800.0     !  760 Torr RRKM WAN/FRE
!
!nC4H3 + H = C2H2 + H2CC                      1.60E+19   -1.60   2220.0     !   20 Torr RRKM WAN/FRE
!nC4H3 + H = C2H2 + H2CC                      1.30E+20   -1.85   2960.0     !   90 Torr RRKM WAN/FRE
! nC4H3 + H = C2H2 + H2CC                      6.30E+25   -3.34  10014.0     !  760 Torr RRKM WAN/FRE
!  
!nC4H3 + H = C4H4                             1.10E+42   -9.65   7000.0     !   20 Torr RRKM WAN/FRE
!nC4H3 + H = C4H4                             1.10E+42   -9.65   7000.0     !   90 Torr RRKM WAN/FRE
 nC4H3 + H = C4H4                             2.00E+47  -10.26  13070.0     !  760 Torr RRKM WAN/FRE
!
 nC4H3+H = C4H2+H2                            3.00E+13    0.00       0.     != 0.5*C2H3+H
 nC4H3+OH = C4H2+H2O                          2.00E+12    0.00       0.     != 0.5*C2H3+OH
!
nC4H3 + C2H2 = l-C6H4 + H                    1.40E+15   -0.81   10000.     !   10 Torr RRKM WAN/FRE
PLOG/0.013          1.40E+15   -0.81   10000./
PLOG/0.026          3.70E+16   -1.21   11100./
PLOG/0.118          1.80E+19   -1.95   13200. /
PLOG/1.000          2.50E+14   -0.56   10600./
PLOG/10.00          1.20E+17   -1.28   13700./


 nC4H3 + C2H2 = C6H5                     9.60E+70  -17.77   31300.          !  760 Torr RRKM WAN/FRE
PLOG/0.013          1.40E+67  -17.42   23000./
PLOG/0.026          2.30E+68  -17.65   24400./
PLOG/0.118          9.80E+68  -17.58   26500. /
PLOG/1.000          9.60E+70  -17.77   31300./
PLOG/10.00          1.90E+63  -15.25   30600./
 

 nC4H3 + C2H2 = o-C6H4 + H                    6.90E+46  -10.01   30100.     !  760 Torr RRKM WAN/FRE
PLOG/0.013          9.20E+33   -6.57   15900./
PLOG/0.026          1.90E+36   -7.21   17900./
PLOG/0.118          3.50E+41   -8.63   23000./
PLOG/1.000          6.90E+46  -10.01   30100./
PLOG/10.00          3.10E+49  -10.59   37700./

!
! Reactions of iC4H3
!
!iC4H3 + H = C2H2 + H2CC                      2.40E+19   -1.60    2800.0    !   20 Torr RRKM WAN/FRE
!iC4H3 + H = C2H2 + H2CC                      3.70E+22   -2.50    5140.0    !   90 Torr RRKM WAN/FRE
 iC4H3 + H = C2H2 + H2CC                      2.80E+23   -2.55   10780.0    !  760 Torr RRKM WAN/FRE
!  
!iC4H3 + H = C4H4                             4.20E+44  -10.27    7890.0    !   20 Torr RRKM WAN/FRE
!iC4H3 + H = C4H4                             5.30E+46  -10.68    9270.0    !   90 Torr RRKM WAN/FRE
 iC4H3 + H = C4H4                             3.40E+43   -9.01   12120.0    !  760 Torr RRKM WAN/FRE
!   
 iC4H3+H = C4H2+H2                            6.00E+13    0.00       0.     != C2H3+H
 iC4H3+OH = C4H2+H2O                          4.00E+12    0.00       0.     != C2H3+OH
 iC4H3+O2 = HCCO+CH2CO                        7.86E+16   -1.80       0.     !89SLA/BER
!*********************************************************************************
!																				 !
!              			C4H4 mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************

 C4H4 + H = nC4H5                             1.30E+51  -11.92    16500.    !  760 Torr RRKM WAN/FRE
PLOG/0.013          1.20E+51  -12.57    12300. /
PLOG/0.026          4.20E+50  -12.34    12500./
PLOG/0.118          1.10E+50  -11.94    13400./
PLOG/1.000          1.30E+51  -11.92    16500./
PLOG/10.00          6.20E+45  -10.08    15800./
 
 C4H4 + H = iC4H5                             4.90E+51  -11.92    17700.    !  760 Torr RRKM WAN/FRE
PLOG/0.013          6.10E+53  -13.19    14200. /
PLOG/0.026          9.60E+52  -12.85    14300./
PLOG/0.118          2.10E+52  -12.44    15500./
PLOG/1.000          4.90E+51  -11.92    17700./
PLOG/10.00          1.50E+48  -10.58    18800./

 C4H4+H = nC4H3+H2                            6.65E+05    2.53   12240.     !97WAN/FRE
 C4H4+H = iC4H3+H2                            3.33E+05    2.53    9240.     !97WAN/FRE
 C4H4+OH = nC4H3+H2O                          3.10E+07    2.0     3430.     !97WAN/FRE
 C4H4+OH = iC4H3+H2O                          1.55E+07    2.0      430.     !97WAN/FRE
 C4H4+O = C3H3+HCO                            6.00E+08    1.45    -860.     != C4H6+O
 C4H4+C2H = l-C6H4+H                          1.20E+13    0.0        0.     != C2H+C2H4
!*********************************************************************************
!																				 !
!              			C4H5 mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************
nC4H5+OH=C4H4+H2O                     2.00E+13     0.00        0.   !estimated
!! I will assume the abstraction is fast with very little temp dependence
!! different from USC-Mech II and Jim Miller's. H-atom abstraction from Radicals is always fast.
!! since C-H bond is weak, for example C2H3,  
!! however, addition-elimination is also a possibility for unsaturated species
nC4H5+OH=HCO+aC3H5                    3.00E+13     0.00        0.   !estimated
!! again from Jim Miller, The OH in the intermediate is weak, H is ready to trasnfer via four center or six center TS
!! products could be HCO+CH3CHCH or HCO+CH2CHCH2, using the latter 
nC4H5+H=C4H4+H2                       3.00E+13     0.00        0.   ! Wang H., and Frenklach M. Combust. Flame 110 (1997) 173.
!! radical-radical reaction fast, increase a factor of 2 
nC4H5+O=CO+aC3H5                      6.00E+13     0.00        0.   ! estimated
!! should be very fast CH2CHCHCH. RADICAL SITE SIMILAR AS C2H3+O
nC4H5+O2=CH2CO+CH2CHO                 1.00E+13     0.00        0.   ! estimated
!! this actually is from Jim Miller's. make more sense to me via five center TS
!! analogy to C2H3+O2 for entrance channel, no barrier

!! these three may be true, but I guess they wont be important
!! ignore them for now
nC4H5+C2H=FC6H6                     4.00E+12     0.00        0.   ! JAM6
nC4H5+C2H=C6H5+H                    1.60E+13     0.00        0.   ! JAM6
nC4H5+C2H=C4H4+C2H2           	     3.00E+12     0.00     5000.   ! JAM6
!nC4H5+C2H3=FC6H6                    1.00E+13     0.00        0.0  ! JAM6
!nC4H5+C2H3=C6H5+H                   6.00E+12     0.00        0.0  ! JAM6

iC4H5+O=C2H3+CH2CO          	       3.00E+13     0.00        0.0  ! JAM
iC4H5+O=CH2O+C3H3         	       3.00E+13     0.00        0.0  ! JAM
!! resonant structure. O addition equally on two C-sites  
iC4H5+H=C3H3+CH3           		   1.00E+14     0.00        0.   ! JAM 
iC4H5+H=C2H2+C2H4          	       3.00E+13     0.00        0.   ! JAM&SJK
!! make sense from simple structure estimation
iC4H5+OH=C4H4+H2O          	       2.00E+13     0.00        0.   ! JAM
! that's is what it is supposed to be
iC4H5+OH=C2H4+CH2CO        	       2.00E+13     0.00        0.   ! JAM
iC4H5+OH=CH2O+aC3H4         	       2.00E+13     0.00        0.   ! JAM
iC4H5+OH=CH2OH+C3H3      	      3.00E+12     0.00        0.   ! JAM
!! two sites barrierless addition, products make sense
iC4H5+O2=CH2CHO+CH2CO       	       7.40E+15    -1.37    11910.   ! Rutz et al. J. Phys. Chem. A 2011, 115, 1018?1026
iC4H5+O2=C2H3CO+CH2O       	       4.52E+19    -2.20     9990.   ! Rutz et al. J. Phys. Chem. A 2011, 115, 1018?1026
!iC4H5+O2=CH2CHO+CH2CO       	       2.14E+11     0.21    12760.   ! Rutz et al. J. Phys. Chem. A 2011, 115, 1018?1026
!! make sense for me
iC4H5+C2H=FC6H6           	  	   1.00E+13     0.00        0.0  ! JAM6
iC4H5+C2H=C6H5+H            	  	   6.00E+12     0.00        0.0  ! JAM6
iC4H5+C2H=2C3H3          	 	   4.00E+12     0.00        0.0  ! JAM6
iC4H5+C2H=C4H4+C2H2         	 	   3.00E+12     0.00     5000.0  ! JAM6
!! trust Jim Miller no other choice
!! Imporant Note: the following rates are calculated using N2 as the collider
!! recombination are not important for the reaction systems. So will not think about the colision efficencies

nC4H5+C2H2=H+C6H6 					   2.94E+16    -1.09     9257.  ! Senosiain, et al., J. Phys. Chem. A 2007, 111, 3740                
 PLOG /0.01    1.37E+16     -1.00     8896./
 PLOG /0.025   2.94E+16     -1.09     9259./
 PLOG /0.1     1.37E+16     -1.00     8898./
 PLOG /1.      1.37E+16     -1.00     8900./
 PLOG /10.     1.69E+16     -1.03     8967./
 PLOG /100.    1.65E+16     -1.01     9480./
nC4H5+C2H2=H+FC6H6 				   1.52E+15    -0.76     8762.  ! Senosiain, et al., J. Phys. Chem. A 2007, 111, 3740                 
 PLOG /0.01     1.52E+15     -0.76     8766./
 PLOG /0.025    1.52E+15     -0.76     8766./
 PLOG /0.1      1.53E+15     -0.76     8766./
 PLOG /1.       4.62E+15     -0.89     9142./
 PLOG /10.      1.74E+19     -1.86     12382./
 PLOG /100.     1.23E+20     -2.00     16152./
!nC4H5+C2H2=H+CH2CHCHCHCCH  		   1.14E+09     1.39    17338.   ! Senosiain, et al., J. Phys. Chem. A 2007, 111, 3740                 
! PLOG /0.01     1.86E-15     1.39     8723./
! PLOG /0.025    1.90E-15     1.39     8727./
! PLOG /0.1      2.42E-15     1.36     8777./
! PLOG /1.       1.87E-15     1.39     8723./
! PLOG /10.      8.47E-15     1.21     9065./
! PLOG /100.     4.94E-14     1.03     9784./
!nC4H5+C2H2=C6H7 					   2.85E+48   -12.29    15693.4  ! Senosiain, et al., J. Phys. Chem. A 2007, 111, 3740
! PLOG /1.    4.74E+24     -12.29       7902./   ! 500 K-2500 K  
! PLOG /1.    5.80E-30       4.01      -2574./   ! 500 K-2500 K
! PLOG /10.   2.39E+20     -10.08       8905./   ! 500 K-2000 K   
! PLOG /10.   2.64E+20     -33.59     -63439./   ! 500 K-2000 K
! PLOG /100.  7.69E+10     -6.68        8499./   ! 500 K-1500 K 
! PLOG /100.  3.99E+03     -25.14     -57252./   ! 500 K-1500 K

iC4H5+C2H2=H+C6H6  				   1.47E+23    -3.28    24907.   ! Senosiain, et al., J. Phys. Chem. A 2007, 111, 3740                 
 PLOG /0.01     1.47E+23     -3.28     24907./
 PLOG /0.025    1.47E+23     -3.28     24907./
 PLOG /0.1      1.47E+23     -3.28     24907./
 PLOG /1.       1.67E+23     -3.30     24959./
 PLOG /10.      8.25E+24     -3.76     24562./
 PLOG /100.     5.37E+32     -5.84     35023./
iC4H5+C2H2=H+FC6H6  				   1.01E+34    -5.94    28786.  ! Senosiain, et al., J. Phys. Chem. A 2007, 111, 3740                        
 PLOG /0.01     6.50E+24     -3.44     20319./
 PLOG /0.025    1.01E+34     -5.94     28786./
 PLOG /0.1      6.50E+24     -3.44     20319./
 PLOG /1.       6.80E+24     -3.45     20337./
 PLOG /10.      9.70E+25     -3.76     21326./
 PLOG /100.     5.22E+41     -7.94     39597./
iC4H5+C2H2=H+C4H5C2H    			   5.70E+18    -1.43    30351.  ! Senosiain, et al., J. Phys. Chem. A 2007, 111, 3740                   
 PLOG /0.01     5.59E+18     -1.43     30341./
 PLOG /0.025    5.70E+18     -1.43     30351./
 PLOG /0.1      7.29E+18     -1.46     30465./
 PLOG /1.       5.59E+18     -1.43     30341./
 PLOG /10.      5.62E+19     -1.69     31434./
 PLOG /100.     4.70E+23     -2.73     36142./
!iC4H5+C2H2=H+CHCCH2CHCCH2 			   6.44E+15    -0.52    38439.  ! Senosiain, et al., J. Phys. Chem. A 2007, 111, 3740                 
! CHCCH2CHCCH2 aka 1,2-Hexadiene-5-yne
! PLOG /0.01     6.44E+15     -0.52     38439./
! PLOG /0.025    6.44E+15     -0.52     38439./
! PLOG /0.1      6.44E+15     -0.52     38439./
! PLOG /1.       6.62E+15     -0.53     38452./
! PLOG /10.      9.94E+15     -0.57     38647./
! PLOG /100.     5.67E+17     -1.04     40582./
!iC4H5+C2H2=C6H7     				   1.14E+31    -9.21    19403.  ! Senosiain, et al., J. Phys. Chem. A 2007, 111, 3740
! PLOG /1.     1.14E+31     -9.21     19403./
! PLOG /1.     4.34E+39     -9.12     19210./
! PLOG /10.    6.68E+51     -11.97    29666./
! PLOG /10.    3.60E+51     -28.03   -70552./
! PLOG /100.   4.03E+42     -8.76     28819./
! PLOG /100.   3.41E+41     -25.42   -77676./


nC4H5 + H = iC4H5 + H                        6.00E+13	0.00	0.00  ! Estimated

!*********************************************************************************
!																				 !
!              			C4H6 mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************
!!  C4H6     ! CH2CHCHCH2                              54.0924  CH2=CH-CH=CH2
!!  C4H612   ! CH3CHCCH2                               54.0924  CH3-CH=C=CH2
!!  iiC4H6   ! CH3CCCH3   
!C4H6-13 = iC4H5 + H                             8.20E+51 -10.92    118409.    ! RRKM 20 Torr  WAN/FRE
!PLOG /    0.026     8.20E+51 -10.92    118409./
!PLOG /    0.118     3.30E+45  -8.95    115934./
!PLOG /    1.00      5.70E+36  -6.27    112353./

!
!C4H6-13 = nC4H5 + H                             3.50E+61 -13.87    129677.    ! RRKM 20 Torr  WAN/FRE
!PLOG /    0.026     3.50E+61 -13.87    129677./
!PLOG /    0.118     8.50E+54 -11.78    127472./
!PLOG /    1.00      5.30E+44  -8.62    123608./

!
! C4H6-13 = C4H4+H2                               2.50E+15   0.0      94700.    !96HID/HIG
! C4H6-13+H = nC4H5+H2                            1.33E+06   2.53     12240.    != C2H4+H
! C4H6-13+H = iC4H5+H2                            6.65E+05   2.53      9240.    !Estimated
!
!C2H4 + C2H3 = C4H6-13 + H                       7.40E+14  -0.66    8420.0     !   20 Torr RRKM WAN/FRE
!C2H4 + C2H3 = C4H6-13 + H                       1.90E+17  -1.32   10600.0     !   90 Torr RRKM WAN/FRE
! C4H6-13+H = C2H4+C2H3                           1.46E+30  -4.34     21647.    !97WAN/FRE 1 atm
!C4H6-13+H = C2H4+C2H3                           5.45E+30  -4.51     21877.    !97WAN/FRE 10 atm

!C4H6-13+O=CH3CHCHCO+H                     1.50E+08     1.45     -860.   !USC-Mech II
!C4H6-13+O=CH2CHCHCHO+H                    4.50E+08     1.45     -860.   !USC-Mech II
!! rates were determined in ADUSEI ET AL.,J. Phys. Chem. 1993,97, 1406-1408
!! But products is unknown.
!! Hai Wang did the calculation in 2000 and estimated the branching ratios 
!C4H6-13+O=nC4H5+OH                      7.50E+06    1.90     3740.   ! USC-Mech II
!C4H6-13+O=iC4H5+OH                      7.50E+06    1.90     3740.   ! USC-Mech II
!! abstraction is slow for O(3P), they are from estimation in J Phys Chem 91:1568(1987)
!!C2H4+H=C2H3+H2                         2.40E+02    3.62    11267.  ! Baulch et al., J. Phys. Chem. Ref. Data, 34:757 (2005)
!! Will think about it more carefully.
!C4H6-13+H=pC3H4+CH3                       2.00E+12     0.00     7000.   ! USC-Mech II
!C4H6-13+H=aC3H4+CH3                       2.00E+12     0.00     7000.   ! USC-Mech II

!!20 Torrr data
!! these reactions should have an entrance barrier. for example H+C2H2=C2H3, H+C2H4=C2H5
!! But the barrier is small to form CH3CHCHCH2, the following isomerizations have high barrier to form final products
!C4H6-13+OH=CH3CHO+C2H3                    6.30E+12     0.00     -874.   ! From Jim Miller's 
!C4H6-13+OH=aC3H5+CH2O                     6.30E+12     0.00     -874.   ! From Jim Miller's
!! addtion equally to carbon sites, products channel energy are lower
!! assuming rates are the same
!C4H6-13+OH=nC4H5+H2O                     1.53E+06     2.07     1905.   ! Jim Miller's J. Phys. Chem. A 2010, 114, 8312?8318
!   DUPLICATE
!C4H6-13+OH=nC4H5+H2O                     3.49E+06     2.04     4292.   ! Jim Miller's J. Phys. Chem. A 2010, 114, 8312?8318
!   DUPLICATE
!C4H6-13+OH=iC4H5+H2O                     1.54E+06     2.07     1441.   ! Jim Miller's J. Phys. Chem. A 2010, 114, 8312?8318
!   DUPLICATE
!C4H6-13+OH=iC4H5+H2O                     1.62E+07     1.99     2150.   ! Jim Miller's J. Phys. Chem. A 2010, 114, 8312?8318
!   DUPLICATE   
!! reduce this one a factor of 2
!! OH reaction is complicated. several addition and abstraction channels
!! addition is two transition state system. abstraction should be dominant when T>800K
!! total rate matches low temp expts.
!! Jim Miller's old rate is not too good, new rate is close to my estimation.
!C4H6-13+CH3=nC4H5+CH4                    2.00E+14     0.00    22800.   ! USC-Mech II
!C4H6-13+CH3=iC4H5+CH4                    1.00E+14     0.00    19800.   ! USC-Mech II

!! 1,2-C4H6 Chemistry CH3CHCCH2
!C4H6-12=iC4H5+H                         4.20E+15     0.00    92600.    !95LEU/LIN
!C4H6-12+H=C4H6-13+H                        2.00E+13     0.00     4000.    !Estimated
!C4H6-12+H=iC4H5+H2                      1.70E+05     2.50     2490.    != C3H6+H
!C4H6-12+H=aC3H4+CH3                     2.00E+13     0.00     2000.    !97WAN/FRE
!C4H6-12+H=pC3H4+CH3                     2.00E+13     0.00     2000.    !97WAN/FRE
!C4H6-12+O=CH2CO+C2H4                    1.20E+08     1.65      327.    != C3H6+O
!C4H6-12+O=iC4H5+OH                      1.80E+11     0.70     5880.    != C3H6+O
!C4H6-12+OH=iC4H5+H2O                    3.10E+06     2.00     -298.    != C3H6+OH
!C4H6-12=C4H6-13                            3.00E+13     0.00    65000.    !96HID/HIG
!C4H6-12+CH3=iC4H5+CH4                   7.00E+13     0.00    18500.    !88KER/SIN
!! iiC4H6   ! CH3CCCH3 
!C4H6-2=C4H6-13                            3.00E+13     0.00    65000.    !96HID/HIG
!C4H6-2=C4H6-12                          3.00E+13     0.00    67000.    !96HID/HIG
!C4H6-2+H=C4H6-12+H                      2.00E+13     0.00     4000.    !Estimated
!C4H6-2+H=iC4H5+H2                      3.40E+05     2.50     2490.    != C3H6+H 
!C4H6-2+H=CH3+pC3H4                     2.60E+05     2.50     1000.    !96HID/HIG
!C4H6-2=H+iC4H5                        5.00E+15     0.00    87300.    !96HID/HIG
!C4H6-2+CH3=iC4H5+CH4                  1.40E+14     0.00    18500.    !Estimated
!! USC-Mech II and reference therein is the most reliable source
!! most of the reaction products and rates are reasonable
!*********************************************************************************
!																				 !
!              			C5H2 mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************
!! C5H2----HCCCCCH radicals triplet state

!C5H2+O=C4H2+CO                         6.00E+13     0.00        0.    ! estimated 
!C5H2+OH=C4H2+CO+H                      2.50E+13     0.00        0.    ! estimated 
!! product is not too right, however, dont want to bother with new thermo
!! negelect C5H3 dissociation or C5H2+H association for now
!! reaction with O2
!C5H2+CH=C6H2+H                         1.00E+14     0.00        0.0   ! estimated
!!C5H2+C2H=C7H2+H                        1.00E+14     0.00        0.0   ! estimated
!!Should be in the right range
!H2CCCCCH+OH=C5H2+H2O           	       2.00E+13     0.00        0.    ! estimated 
!HCCCHCCH+OH=C5H2+H2O           	       2.00E+13     0.00        0.    ! estimated
!H2CCCCCH+O=C4H+CH2O           	       8.00E+13     0.00        0.    ! estimated
!HCCCHCCH+O=C3H2+HCCO           	       8.00E+13     0.00        0.    ! estimated
!H2CCCCCH+H=C5H2+H2           	       4.00E+13     0.00        0.    ! estimated 
!HCCCHCCH+H=C5H2+H2           	       4.00E+13     0.00        0.    ! estimated
!H2CCCCCH+CH3=C5H2+CH4        	       3.00E+12     0.00     5000.    ! estimated
!HCCCHCCH+CH3=C5H2+CH4         	       3.00E+12     0.00     5000.    ! estimated
!! right range for all above, not too important anyway I guess
!HCCCHCCH+H=H2CCCCCH+H                  1.00E+13     0.00        0.    ! estimated
!! depdening on thermo, if reactant is less stable, the rate could be 1.0E14 or at least 6.0E13
!H2CCCCCH+CH3=FC6H6           		   1.00E+11     0.00        0.0   ! JAM 11/2007
!H2CCCCCH+CH3=C6H5+H            		   1.00E+11     0.00        0.0   ! JAM 11/2007
!H2CCCCCH+CH3=C6H6              		   5.00E+10     0.00        0.0   ! JAM 11/2007
! These need some work
!HCCCHCCH+CH3=FC6H6                     1.00E+11     0.00        0.    ! JAM 11/2007
!HCCCHCCH+CH3=C6H5+H            		   1.00E+11     0.00        0.    ! JAM 11/2007
!! The thermo of C5H3 has to re-evaluated before assessing the rates 
!*********************************************************************************
!																				 !
!              			C6H2 mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************
C6H2+H=C6H3                            1.10E+30  -4.92    10800.0  ! Wang, H.; Frenklach, M. Combust.Flame 1997, 110, 173.
!C6H2+O=C5H2+CO                         2.70E+13     0.00     1720.  ! Estimated 
!C6H2+OH=HCCCHCCH+CO                    1.68E+28    -4.59    20140.  ! Estimated 
!! this channel should be pretty good
!! but the other channels are too complicated to write the rate and thermo---H+C5H2O
!*********************************************************************************
!																				 !
!              			C6H3 mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************
!! linear species HCC-C*=CH-CCH 
C6H3+H=C4H2+C2H2                       2.40E+19    -1.60     2800.  ! Wang, H.; Frenklach, M. Combust.Flame 1997, 110, 173.
!C6H3+H=l-C6H4                          4.20E+44   -10.27     7890.  ! Wang, H.; Frenklach, M. Combust.Flame 1997, 110, 173.
C6H3+H=C6H2+H2                         4.00E+13     0.00        0.  ! Wang, H.; Frenklach, M. Combust.Flame 1997, 110, 173.
C6H3+OH=C6H2+H2O                       2.00E+13     0.00        0.  ! estimate
C6H3+O2=>CO+C3H2+HCCO                  5.00E+11     0.00        0.  ! Wang, H.; Frenklach, M. Combust.Flame 1997, 110, 173.
!! this one is slow, no doubt about it
!*********************************************************************************
!																				 !
!              			C6H4 mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************
!!o-C6H4 decomposition
!!l-C6H4 HCC-CH=CH-CCH 
!! remember to check the thermo
!o-C6H4=C2H2+C4H2                       1.95E+90   -21.30   139390.  ! Moskaleva et al., Phys. Chem. Chem. Phys., 1999, 1, 3967-3972
!! 100 Torr data
!o-C6H4=l-C6H4                          4.77E119   -30.10   151502.  ! Moskaleva et al., Phys. Chem. Chem. Phys., 1999, 1, 3967-3972
!! 100 Torr data for O-C6H4 to p-C6H4, but p-C6H4 will isomerize to l-C6h4 very quickly 
!!l-C6H4+H=n-C6H5                        3.30E+44  -10.04    18800.  ! (54) Wang 97
!! it wont be stablized at all. I can hardly believe the existence of n-C6H5 in combustion enviroments
!o-C6H4+OH=C5H5+CO                      1.00E+13     0.00        0.  ! Estimated
!! Hai Wang has the same number
!o-C6H4+O=OH+C6H3                       1.00E+13     0.00        0.  ! Estimated
!! at least at this level for high temp
!l-C6H4+H=C6H5                          3.60E+77   -20.09    28100.  ! Wang, H.; Frenklach, M. Combust.Flame 1997, 110, 173. 
!l-C6H4+OH=C6H3+H2O                     3.10E+06     2.00      430.  ! Wang, H.; Frenklach, M. Combust.Flame 1997, 110, 173. 
!!reasonable
!*********************************************************************************
!																				 !
!              			C6H5 mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************
!!!! I dont like the idea of linear C6H5, it can easily stablize to phenyl 
C6H5(+M)=o-C6H4+H(+M)                  4.30E+12     0.62    77313.  ! Hai Wang et al., Proc combust. Inst. 28(2000) 1545-1555   
    LOW/ 1.00E+84 -18.87    90064    /
    TROE/ 0.902, 696., 358., 3856.     /    
    H2/2.0/ H2O/6.0/ CH4/2.0/ CO/1.5/ CO2/2.0/
!! will check collision efficiency
!! I am not sure about the rate either
!! C6H5+H=o-C6H4+H2                       2.00E+11    1.10    24500.  ! 01-MEB-LIN 1 atm wenjun citied this from USC_II
!! I am very surprised to see this rate, it is terribly wrong. Misinterpretation of the paper.
C6H5+H=o-C6H4+H2                       1.10E+06     2.36     4931.  ! Mebel, et al., J Chem Phys 114(2001) 8421
!C6H5+O=C5H5+CO                         1.00E+14     0.00        0.  ! FRANK et al., Symposium (International) on Combustion 25(1994) 833-840
C6H5+OH=C6H5O+H                        5.00E+13     0.00        0.  ! estimate
!C6H5+OH=C6H5O+H                        5.00E+13     0.00        0.  ! estimate
C6H5+OH=o-C6H4+H2O                       1.00E+07     2.00     1000.  ! estimate
!!C6H5+O2=C6H5O+O                          2.39E+21   -2.62     4400.    !(121) Richter 02
C6H5+O2=C6H5O+O                        1.02E+13     0.00     3580.  ! Baulch et al., J. Phys. Chem. Ref. Data, 34:757 (2005)
!! This reaction is very complicated. MC Lin had the PES, but didn't calculate the rates
!!C6H5+O2=C6H4O2+H                       3.00E+13    0.00     8982.  !(139) Sivaramakrishnan 04
!! very high pressure expts with big errors of temperature. Rates are not too good to believe.
C6H5+O2=C6H4O2+H                       4.50E+12     0.00     3590.  ! FRANK et al, Symp. Int. Combust. Proc. 25(1994) 833
!!C6H4O2=C5H4O+CO                       7.40E+11    0.00    59000. !  94-FRA-HER
C6H5+HO2=C6H5O+OH                      5.00E+13     0.00     1000.  !(108) Leung/Linstedt 95
!! might be too fast, HO2 will not so reactive. will think about it
!! Product is most likely to be correct.
C6H5+H2=C6H6+H                         5.71E+04     2.43     6277.  ! Mebel, et al., J. Phys. Chem. A 1997, 101, 3189-3196
!! accuarte through 200-1500 K comparing to experimental data
!C6H5+CH3=C6H5CH3                       1.48E+13     0.00        0.  ! Tokmakov et al., J Phys Chem A 103(1999) 3636-3645
!! Toluene decomposition ?
C6H5+CH4=C6H6+CH3                      6.03E+12     0.00    12321.  ! Tokmakov et al., J Phys Chem A 103(1999) 3636-3645
!C6H5+C2H2=C6H5C2H+H                    4.00E+13     0.00    10093.  ! Baulch et al., J. Phys. Chem. Ref. Data, 34:757 (2005)
!! MC has a very good calcuation results
C6H5+C2H4=C6H6+C2H3                    5.69E-02     4.47     4471.  ! Tokmakov et al.,J. Phys. Chem. A 2004, 108, 9697-9714
!*********************************************************************************
!																				 !
!              			C6H5O mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************
!C6H5O=C5H5+CO                          1.01E+11     0.00    43900.  ! Lin et al. J Phys Chem 1986, 90, 425-431
!! shock tube experiment at 0.4 atm to 0.9 atm
!! decrease a factor of 5 may be too much, a factor of 5 will be alright. Done!
!!C6H5O+H=C5H5+HCO			           1.00E+13    0.00    12000.  ! USC Mech II
!! dont see the possibility for this channel. Even if it exists, it is minor anyway
C6H5O+H=C5H6+CO			               5.00E+13     0.00        0.  ! estimated from MC Lin's paper on C6H5OH PES
!!C6H5O+O=C6H4O2+H                       2.60E+10    0.47      795.  ! MEB-LIN-95 (added 9/23)
!! wrong interpretation of the paper. and the results of the paper is not reliable 
!C6H5O+O=C5H5+CO2                       2.00E+13     0.00        0.  ! estimated
!C6H5O+O=C6H4O2+H                       1.20E+14     0.00        0.  ! estimated
!! all the previous rates of this reaction are estimation.
!! i believe current value should be more reliable even though it may not necessarily give the best simulation  
!!C6H5O+H=C6H5OH                         4.43E+60  -13.23    30010.  !(121) Richter 02
!! This rate is so wrong! Write in reverse reaction
!C6H5O+OH=C6H4O+H2O                     2.95E+06     2.00    -1312.0 ! USC Mech II                         
!C6H5+C6H5=C6H5C6H5                    5.70E+12    0.00        0.  !HEC/HIP 96 from Lindstedt 96
!A+C6H5=C6H5C6H5+H                     2.00E+12    0.00     3996.7 !FAH/STE 89 from Lindstedt 96                      
!C6H5CH2+C6H5CH2=BiBenzyl              2.51E+11    0.40        0.  !(114) Emdee/Bre92
!BiBenzyl+H=C6H5CHCH2+C6H5+H2          5.01E+13    0.00    13000.  !(144) Colket 94
!*********************************************************************************
!																				 !
!              			C6H4O2 mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************
!C6H4O2=C5H4O+CO                        7.40E+10     0.00    59020.  ! FRANK et al, Symp. Int. Combust. Proc. 25(1994) 833
!! experiments are at 1.3~2.3 atm. decrease the rate a factor of 10 may be OK for the 30 Torr experiments considering the falloff
!!C6H4O2+OH rate is about 3.0E12 at 300K, but the products is very hard to check
!C6H4O2+H=CO+C5H5O                      4.30E+09     1.45     3900.  !  USC Mech II
!C6H4O2+O=2CO+C2H2+CH2CO                3.00E+13     0.00     5000.  !  USC Mech II

!*********************************************************************************
!																				 !
!              			C6H6 mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************

C6H6+OH=C6H5+H2O                       2.34E+04     2.68      733.  ! Seta et al., J. Phys. Chem. A 2006, 110, 5081-5090
C6H6+OH=C6H5OH+H                       1.32E+02     3.25     5589.  ! Seta et al., J. Phys. Chem. A 2006, 110, 5081-5090

C6H6+O=C6H5O+H                         1.98E+07     1.80     3974.  ! Taatjes et al., J. Phys. Chem. A 2010, 114, 3355?3370
C6H6+O=C6H5OH                          1.50E+29    -4.72    13342.  ! Taatjes et al., J. Phys. Chem. A 2010, 114, 3355?3370
   DUPLICATE
C6H6+O=C6H5OH                          8.31E+04    -5.04     9356.  ! Taatjes et al., J. Phys. Chem. A 2010, 114, 3355?3370
   DUPLICATE  
C6H6+O=C5H6+CO                         7.20E+13     0.12    11777.  ! Taatjes et al., J. Phys. Chem. A 2010, 114, 3355?3370 
!!C6H6+O=C6H5+OH 
!! Abstraction is minor at low temp for sure, but might be important at higher temp
!! however, all the results conclude it is not important except J. Phys. Chem. A 2007, 111, 3836-3849                        
C6H6+O2=C6H5+HO2                       6.30E+13     0.00    60000.  ! Asaba et al., Proc. Int. Symp. Shock Tubes Waves 8(1971) 1-12
!! This rate is actually an estimation. it seems that all the information about this reaction are from this referenece 
!*********************************************************************************
!																				 !
!              			C6H5OH mechanism-HPMECH					     			 !
!																				 !
!*********************************************************************************
C6H5OH+M=C6H5O+H+M                     2.56E+94   -28.21   125976.    ! Xu et al. J. Phys. Chem. A 2006, 110, 1672-1677
C6H5OH=C5H6+CO                         8.62E+15    -0.61    74115.    ! Xu et al. J. Phys. Chem. A 2006, 110, 1672-1677
C6H5OH+H=C6H5O+H2                      1.15E+14     0.00    12400.    ! Baulch et al., J. Phys. Chem. Ref. Data, 34:757 (2005)
C6H5OH+OH=H2O+C6H5O                    1.00E+13     0.00      880.    ! Baulch et al., J. Phys. Chem. Ref. Data, 34:757 (2005)
C6H5OH+O=C6H5O+OH                      1.69E+13     0.00     3060.    ! Baulch et al., J. Phys. Chem. Ref. Data, 34:757 (2005)

END